Степенные выражения (выражения со степенями) и их преобразование

Общий метод решения показательных уравнений

Пусть у нас есть вот такой пример:

Где \(a,b\) какие-то положительные числа. (\(a>0, \; b>0\).

Согласно разобранным выше примерам, логично предположить, что для того, чтобы решить данное уравнение, нужно его преобразовать к виду, где слева и справа стоят показательные функции с одинаковым основанием. Так и поступим.

Слева у нас уже стоит \(a^x\), с этим ничего делать не будем, а вот справа у нас стоит загадочное число \(b\), которое нужно попытаться представить в виде \(b=a^m\). Тогда уравнение принимает вид:

Раз основания одинаковые, то мы можем просто приравнять степени:

Вот и весь алгоритм решения. Просто нужно преобразовать исходное уравнение таким образом, чтобы слева и справа стояли показательные функции с одинаковыми основаниями, тогда приравниваем степени и вуаля – сложное показательное уравнение решено. Осталось только разобраться, как так преобразовывать. Опять разберем на примерах:

Пример 5

Замечаем, что \(16=2*2*2*2=2^4\) это степень двойки:

Основания одинаковые, значит можно приравнять степени:

Пример 6Пример 7

Здесь мы заметили, что \(9=3^2\) и \(81=3^4\) являются степенями \(3\).

Все здорово, но проблема в том, что такая схема решения показательных уравнений работает не всегда. Что делать, если привести к одинаковому основанию не получается. Например:

Пример 8

\(3\) и \(2\) привести к одинаковому основанию затруднительно. Но тем не менее мы должны это сделать. Воспользуемся следующей схемой преобразований: пусть есть некоторое положительное число \(b>0\), тогда его можно представить в виде степени любого, нужного вам, положительного числа не равного единице \(a>0, \; a \neq 1\):

Эта очень важная формула, рекомендуем ее выучить. Вернемся к нашему примеру и по формуле представим \(2\) в виде \(3\) в какой-то степени, где \(a=3\), а \(b=2\):

Подставим данное преобразование в наш пример:

Получили равенство двух показательных функций с одинаковым основанием, значит можем приравнять их степени:

Так в ответ и запишем. Никакой ошибки здесь нет, дело в том, что такие логарифмы можно посчитать только на калькуляторе, поэтому на ЕГЭ или в контрольной работе вы просто оставляете ответ в таком виде.

Кто забыл, что такое логарифм, можно посмотреть здесь.

Рассмотрим еще несколько аналогичных примеров.

Пример 9

Те, кто хорошо знает свойства логарифмов, могут поиграться с последней формулой и получить ответ в разном виде:

Все эти варианты ответа верные, их можно смело писать в ответ.

И так, мы с вами научились решать любые показательные уравнения вот такого вида: \(a^x=b\), где \(a>0; \; b>0\).

Но это еще далеко не все. Часто вы будете встречать показательные уравнения гораздо более сложного типа. В ЕГЭ по профильной математике это номер 15 из 2й части. Но бояться тут не нужно, все на первый взгляд сложные уравнения при помощи обычно не самых сложных преобразований сводятся к уравнениям типа \(a^x=b\), где \(a>0; \; b>0\). Рассмотрим типы сложных уравнений, которые могут попасться:

Стандартный вид числа

В физике и других естественных науках изучаются объекты, чьи характеристики (масса, длина, скорость и т.д.) могут измеряться очень большими или очень малыми величинами. Например, масса атома железа равна 0,0000000000000000000000000927 килограмм, а масса Солнца оценивается в 1988500000000000000000000000000 килограмм. Работать с такими числами достаточно неудобно. Сложно даже сравнивать их между собой, ведь для этого надо подсчитывать количество нулей в каждом числе. Поэтому в науке часто используется особая форма чисел, которую называют стандартным видом числа. Он основан на том, что любое число можно записать как произведение числа a, находящегося в пределах от 1 до 10, и какой-нибудь целой (в том числе отрицательной) степени десятки.

Приведем примеры представления чисел в стандартном виде

90 = 9•10 = 9•101

91 = 9,1•10 = 9,1•101

900 = 9•100 = 9•102

912 = 9,12•100 = 9,12•102

Покажем случаи, когда порядок равен нулю или меньше него

7 = 7•1 = 7•10

7,63 = 7,63•1 = 7,63•10

0,8 = 8•0,1 = 8•10– 1

0,0875 = 8,75•100 = 8,75•10– 2

Посмотрите, насколько короче выглядит запись физических величин с использованием стандартного вида:

  • масса Солнца: 1988500000000000000000000000000 кг = 1,9885•1030 кг;
  • масса Земли: 5970000000000000000000000 кг = 5,97•1024 кг;
  • масса атома железа: 0,0000000000000000000000000927 = 9,27•10-26 кг.

Пример. Укажите стандартный вид числа 76000000.

Решение. Первой ненулевой цифрой в записи является семерка, поэтому стандартный вид будет выглядеть так:

7,6•10n

где n– какое-то целое число, которое нам надо найти. Поставим в исходном числе запятую после семерки:

7,6000000

Видно, что мы отделили запятой 7 разрядов, то есть перенесли запятую на 7 разрядов вправо. Поэтому n равно 7:

76000000 = 7,6•107

Действительно, умножение дробного числа на 10 приводит к смещению запятой на одну позицию влево, поэтому при умножении 7,6 на 107 получим 76000000. Наши действия можно проиллюстрировать рисунком:

В случае с числами, меньшими единицы, также надо смотреть на количество разрядов между запятой и первой ненулевой цифрой. Пусть надо представить в стандартном виде десятичную дробь 0,000005605. Значащей частью числа будет 5,605. Для того чтобы получить ее, надо в исходной дроби перенести запятую на 6 разрядов вправо. Поэтому порядок будет равен (– 6):

Теперь попробуем выполнить обратное преобразование – по стандартному виду числа записать его в привычной нам десятичной форме. Пусть есть запись 2,56•105. Для начала искусственно припишем несколько ноликов к значащей части:

2,56 = 2,5600000

Теоретически мы можем дописать любое количество нулей, величина дроби от этого не изменится. Порядок числа равен 5, а потому запятую надо перенести на 5 знаков вправо:

2,5600000•105 = 256000,00

Теперь лишние нули после запятой и саму запятую можно и убрать:

256000,00 = 256000

Обратите внимание, что порядок числа был равен 5, а в итоге мы получили шестизначное число. Можно сформулировать правило: у числа, имеющего в стандартной виде порядок n, в десятичной представлении перед запятой будет стоять (n + 1)знак

Например:

1,23456789•106 = 1234567,89

Здесь порядок числа равен 6, а потому перед запятой стоит 7 знаков.

Напомним, что если число целое и, соответственно, в его записи нет запятой, то ее можно искусственно добавить:

568 = 568,0

Теперь рассмотрим похожий пример с отрицательным порядком числа. Пусть надо записать в десятичном виде число 9,8765•10– 4. Для этого сначала можно условно «подрисовать» нолики перед значащей частью:

0000009,8765

Порядок равен (– 4), а потому надо передвинуть запятую на 4 знака влево

0000009,8765 =000,00098765

Получается, что мы подрисовали слишком много ноликов. Уберем два из нихи получим число в обычной форме:

0,00098765

Вообще, если у числа отрицательный порядок (– n), то первая ненулевая цифра должна оказаться на n-ой позиции после запятой:

Замена переменной

Этот способ решения показательных уравнений понадобится тем, кто не боится по-настоящему трудных задач. Ведь с помощью ввода новой переменной можно упростить даже самое сложное выражение. Его суть проста: мы заменяем «трудную» переменную на более простую и решаем уравнение, а после производим обратную замену. Главное — определить, какую именно переменную стоит заменить.

Пример

4x- 2x+1- 8 = 0

Очевидно, что в этом уравнении показательные функции легко привести к общему основанию: 4х = 22х, а 2х+1 = 2 × 2х.

22х — 2 × 2х — 8 = 0

Что-то напоминает. Если бы из этого выражения можно было волшебным образом убрать 2х, получилось бы обычное квадратное уравнение. Поэтому мы обозначим 2х новой переменной — допустим, y.

Если 2х = y, получается: у2- 2у — 8 = 0.

У такого уравнения есть два корня: у1 = 4, у2 = -2.

Проведем обратную замену: 2х = 4, 2х = -2.

Но мы знаем, что показательная функция в любом случае не может быть отрицательным числом, а значит, 2х = -2 корней не имеет. Следовательно, 2х = 4.

х = 2.

Пример 2

25х — 6 × 5х + 5 = 0

Если присмотреться к этому выражению, становится понятно, что у него много общего с квадратным уравнением. Введем новую переменную: 5х = у.

у2 — 6у + 5 = 0

Корни такого уравнения: 1 и 5.

Выполним обратную замену:

5х = 1, значит х = 0.

5х = 5, значит х = 1.

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Как решаем:

  1. Перенесем 6x из левой части в правую. Знак меняем на противоположный, то есть минус.

    6x −5x = 10

  2. Приведем подобные и завершим решение.

    x = 10

Ответ: x = 10.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

Как решаем:

  1. Сократим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

    −4x = 12 | :(−4)
    x = −3

Ответ: x = −3.

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте схему-подсказку — храните ее в телефоне, учебники или на рабочем столе.

А вот и видео «Простейшие линейные уравнения» для тех, кто учиться в 5, 6 и 7 классе.

Преобразование дробей, содержащих степени

Степенные выражения могут содержать дроби со степенями или представлять собой такие дроби. К таким дробям в полной мере применимы любые из основных преобразований дробей, которые присущи дробям любого вида. То есть, дроби, которые содержат степени, можно сокращать, приводить к новому знаменателю, работать отдельно с их числителем и отдельно со знаменателем и т.д. Для иллюстрации сказанных слов рассмотрим решения нескольких примеров.

Пример.

Упростить степенное выражение .

Решение.

Данное степенное выражение представляет собой дробь. Поработаем с ее числителем и знаменателем. В числителе раскроем скобки и упростим полученное после этого выражение, используя свойства степеней, а в знаменателе приведем подобные слагаемые:

И еще изменим знак знаменателя, поместив минус перед дробью: .

Ответ:

.

Приведение содержащих степени дробей к новому знаменателю проводится аналогично приведению к новому знаменателю рациональных дробей. При этом также находится дополнительный множитель и выполняется умножение на него числителя и знаменателя дроби. Выполняя это действие, стоит помнить, что приведение к новому знаменателю может приводить к сужению ОДЗ. Чтобы этого не происходило, нужно, чтобы дополнительный множитель не обращался в нуль ни при каких значениях переменных из ОДЗ переменных для исходного выражения.

Пример.

Приведите дроби к новому знаменателю: а) к знаменателю a, б) к знаменателю .

Решение.

а) В этом случае довольно просто сообразить, какой дополнительный множитель помогает достичь нужного результата. Это множитель a0,3, так как a0,7·a0,3=a0,7+0,3=a. Заметим, что на области допустимых значений переменной a (это есть множество всех положительных действительных чисел) степень a0,3 не обращается в нуль, поэтому, мы имеем право выполнить умножение числителя и знаменателя заданной дроби на этот дополнительный множитель:

б) Присмотревшись повнимательнее к знаменателю, можно обнаружить, что
и умножение этого выражения на даст сумму кубов и , то есть, . А это и есть новый знаменатель, к которому нам нужно привести исходную дробь.

Так мы нашли дополнительный множитель . На области допустимых значений переменных x и y выражение не обращается в нуль, поэтому, мы можем умножить на него числитель и знаменатель дроби:

Ответ:

а) , б) .

В сокращении дробей, содержащих степени, также нет ничего нового: числитель и знаменатель представляются в виде некоторого количества множителей, и сокращаются одинаковые множители числителя и знаменателя.

Пример.

Сократите дробь: а) , б) .

Решение.

а) Во-первых, числитель и знаменатель можно сократить на наибольший общий делитель (НОД) чисел 30 и 45, который равен 15. Также, очевидно, можно выполнить сокращение на x0,5+1 и на . Вот что мы имеем:

б) В этом случае одинаковых множителей в числителе и знаменателе сразу не видно. Чтобы получить их, придется выполнить предварительные преобразования. В данном случае они заключаются в разложении знаменателя на множители по формуле разности квадратов:

Ответ:

а)
б) .

Приведение дробей к новому знаменателю и сокращение дробей в основном используется для выполнения действий с дробями. Действия выполняются по известным правилам. При сложении (вычитании) дробей, они приводятся к общему знаменателю, после чего складываются (вычитаются) числители, а знаменатель остается прежним. В результате получается дробь, числитель которой есть произведение числителей, а знаменатель – произведение знаменателей. Деление на дробь есть умножение на дробь, обратную ей.

Пример.

Выполните действия .

Решение.

Сначала выполняем вычитание дробей, находящихся в скобках. Для этого приводим их к общему знаменателю, который есть , после чего вычитаем числители:

Теперь умножаем дроби:

Очевидно, возможно сокращение на степень x1/2, после которого имеем .

Еще можно упростить степенное выражение в знаменателе, воспользовавшись формулой разность квадратов: .

Ответ:

Пример.

Упростите степенное выражение .

Решение.

Очевидно, данную дробь можно сократить на (x2,7+1)2, это дает дробь . Понятно, что надо еще что-то сделать со степенями икса. Для этого преобразуем полученную дробь в произведение . Это дает нам возможность воспользоваться свойством деления степеней с одинаковыми основаниями: . И в заключение процесса переходим от последнего произведения к дроби .

Ответ:

.

И еще добавим, что можно и во многих случаях желательно множители с отрицательными показателями степени переносить из числителя в знаменатель или из знаменателя в числитель, изменяя знак показателя. Такие преобразования часто упрощают дальнейшие действия. Например, степенное выражение можно заменить на .

Вид уравнений высших степеней

Уравнения высших степеней имеют вид:

\(P(x)=0,\)

где\( p(x)=a_0x^n+a_1x^{n-1}+…+a_{n-1}x+a_n.\)

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

На практике коэффициенты \(a_0, a_1, a_{0-1}\), an всегда являются целыми числами.

\(a_0\) является старшим коэффициентом, который никогда не равен 0.

\(a_n \)— свободный член.

В таких уравнениях степень больше 2.

Чтобы решить уравнение высшей степени надо найти его корни, или обнаружить, что их нет. Корни представляют собой все значения переменной х, которые приводят многочлен к нулю или верному равенству.

Виды уравнений высших степеней:

  1. Приведенные целые рациональные уравнения n-й степени.
  2. Неприведенные.
  3. Дробные рациональные.
  4. Кубические.
  5. Четвертой степени.
  6. Биквадратные.
  7. Симметричные. Признаком симметричных уравнений являются равные коэффициенты у одночленов, которые равноудалены от начала и конца многочлена, записанного в стандартном виде и стоящего в левой части уравнения.
  8. Сводящиеся к возвратному.

На сегодняшний день в математике нет общих формул, которые бы подходили для решения уравнений высших степеней разных видов. Существуют различные системы для решения разных видов таких уравнений.

Методы решения уравнений высших степеней подразделяются на: стандартные и специальные.

Стандартные:

  • разложение на множители;
  • введение новой переменной.

Специальные:

  • деление на подходящее выражение с переменной;
  • выделение полного квадрата;
  • схема Горнера;
  • деление уголком;
  • группировка скобок;
  • специальная замена;
  • представление дроби в виде двух дробей;
  • через построение графика функции;
  • метод введения параметра.

Показательные неравенства, сводящиеся к рациональным

Как вы, наверное, помните из предыдущего курса алгебры, рациональные показательные неравенства — это такие, в которых левая и правая часть представляют собой дробно-рациональные функции. Метод их решения таков: нужно перенести все в левую часть, чтобы в правой остался лишь ноль, и привести к общему знаменателю. Далее решаем уравнение, отмечаем все корни на оси и применяем метод интервалов (если забыли, что это такое — повторите).

Важно помнить: если в числителе и знаменателе встретятся одинаковые множители с переменной, сокращать их нельзя

Пример 1

Преобразуем неравенство указанным выше способом:

(обратите внимание, мы избавились от минуса в числителе и поменяли знак неравенства)

Поскольку выражение 2х + 2 в любом случае будет больше нуля, мы можем смело его исключить из неравенства.

(2х- 2) × (2х- 1/2) × (2х- 3) > 0

1/2 < 2х < 2

2х > 3

и

-1 < х < 1

х > log23

Ответ: х ∈ (-1;1) U (log23; +∞)

Пример 2

Обозначим 3х через новую переменную y:

3х = y, при условии что 3х > 0.

Применим метод интервалов и получим:

y c (1/3; 3)

Вернем на место нашу старую переменную:

3-1 < 3х <= 3

Поскольку 3 больше 1, знаки не меняем:

-1 < х <= 1

Ответ: х ∈ (-1;1).

Показательные неравенства, сводящиеся к квадратным

Снова давайте вспомним, как аналогичный метод применялся к показательным уравнениям. Если все переменные имели общий множитель, его можно было обозначить новой переменной — в итоге у нас, как правило, получалось квадратное уравнение. Нужно было лишь найти дискриминант и произвести обратную замену. И снова алгоритм решения показательных неравенств будет совершенно таким же.

Пример 1

9х + 27 < 12 × 3х

Наименьший общий множитель в данном случае будет 3х, обозначим его новой переменной у и перенесем все слагаемые в левую сторону.

9х + 27 < 12 × 3х

(3х)2- 12 × 3х + 27 < 0

3х = у

y2 — 12y + 27 < 0

3 < y < 9

Пришло время выполнить обратную замену.

3 < 3х < 9

31 < 3х < 32

Поскольку 3 > 1, мы не меняем знак.

1 < х < 2

Ответ: х ∈ (1;2).

Пример 2

2sin2x — 5 sinx + 2 < 0

Это более сложное показательное неравенство, но и в нем можно угадать скрытое уравнение квадратичной функции — достаточно заменить sinx на новую переменную.

sinx = y

2y2- 5y + 2 < 0

y = 2

y = 1/2

1/2 < y < 2

Произведем обратную замену:

1/2 < sinx < 2

Поскольку sinx и так меньше 1, а значит, точно меньше 2, мы можем отбросить правую часть неравенства и сосредоточиться только на левой.

1/2 < sinx

Воспользуемся формулой х c (arcsina + 2πn; π — arcsina + 2πn), n ∈ z

х c (arcsin 1/2 + 2πn; π — arcsin 1/2 + 2πn), n ∈ z

х c (π/6 + 2πn; π — π/6 + 2πn), n ∈ z

х c (π/6 + 2πn; 5π/6 + 2πn), n ∈ z

Ответ: х ∈ (π/6 + 2πn; 5π/6 + 2πn), n ∈ z

Что представляют собой степенные выражения?

В школьном курсе мало кто использует словосочетание «степенные выражения», зато этот термин постоянно встречается в сборниках для подготовки к ЕГЭ. В большинства случаев словосочетанием обозначаются выражения, которые содержат в своих записях степени. Это мы и отразим в нашем определении.

Определение 1

Степенное выражение – это выражение, которое содержит степени.

Приведем несколько примеров степенных выражений, начиная со степени с натуральным показателем и заканчивая степенью с действительным показателем.

Самыми простыми степенными выражениями можно считать степени числа с натуральным показателем: 32, 75+1, (2+1)5, (−,1)4, 2233, 3·a2−a+a2, x3−1, (a2)3. А также степени с нулевым показателем: 5, (a+1), 3+52−3,2. И степени с целыми отрицательными степенями: (,5)2+(,5)-22.

Чуть сложнее работать со степенью, имеющей рациональный  и иррациональный показатели: 26414-3·3·312, 23,5·2-22-1,5, 1a14·a12-2·a-16·b12, xπ·x1-π, 233+5.

В качестве показателя может выступать переменная 3x-54-7·3x-58 или логарифм x2·lgx−5·xlgx.

С вопросом о том, что такое степенные выражения, мы разобрались. Теперь займемся их преобразованием.

Показательные неравенства

Рассмотрим координатную плоскость, в которой построен график некоторой показательной ф-ции у = ах, причем а > 0. Пусть на оси Ох отложены значения s и t, и t < s. То есть точка t располагается левее на оси Ох.

Ясно, что точкам t и s оси Ох соответствуют точки at и as на оси Оу. Так как

у = ах

является возрастающей функцией, то и величина at окажется меньше, чем as. Другими словами, точка at на оси Оу будет лежать ниже точки аs (это наглядно видно на рисунке). Получается, что из условия t < s следует неравенство at < as. Это значит, что эти два нер-ва являются равносильными.

С помощью этого правила можно решать некоторые простейшие показательные неравенства. Например, пусть дано нер-во

Представим восьмерку как степень двойки:

По только что сформулированному правилу можно заменить это нер-во на другое, которое ему равносильно:

Решением же этого является промежуток (– ∞; 3).

Однако сформулированное нами правило работает тогда, когда основание показательной ф-ции больше единицы. А что же делать в том случае, если оно меньше единицы? Построим график такой ф-ции и снова отложим на оси Ох точки t и s, причем снова t будет меньше s, то есть эта точка будет лежать левее.

Так как показательная ф-ция у = ах при основании, меньшем единицы, является убывающей, то окажется, что на оси Оу точка as лежит ниже, чем at. То есть из условия t < s следует, что at > as. Получается, что эти нер-ва равносильны.

Например, пусть надо решить показательное неравенство

Выразим число слева как степень 0,5:

Тогда нер-во примет вид

По рассмотренному нами правилу его можно заменить на равносильное нер-во

В более привычном виде, когда выражение с переменной стоит слева, нер-во будет выглядеть так:

а его решением будет промежуток (3; + ∞).

В общем случае мы видим, что если в показательном нер-ве вида

основание a больше единицы, то его можно заменить равносильным нер-вом

Грубо говоря, мы просто убираем основание степеней, а знак нер-ва остается неизменным. Если же основание а меньше единицы, то знак неравенства необходимо поменять на противоположный:

Это правило остается верным и в том случае, когда вместо чисел или переменных t и s используются произвольные функции f(x) и g(x). Сформулируем это правило:

Таким образом, для решения показательных неравенств их следует преобразовать к тому виду, при котором и справа, и слева стоят показательные ф-ции с одинаковыми показателями, после чего этот показатель можно просто отбросить. Однако надо помнить, что при таком отбрасывании знак нер-ва изменится на противоположный, если показатель меньше единицы.

Задание. Решите простейшее неравенство

Решение.

Представим число 64 как степень двойки:

теперь и справа, и слева число 2 стоит в основании. Значит, его можно отбросить, причем знак нер-ва останется неизменным (ведь 2 > 1):

Задание. Найдите промежуток, на котором выполняется нер-во

Решение. Так как основание степеней, то есть число 0,345, меньше единицы, то при его «отбрасывании» знак нер-ва должен измениться на противоположный:

Это самое обычное . Для его решения нужно найти нули , стоящей слева, после чего отметить их на числовой прямой и определить промежутки, на которых ф-ция будет положительна.

Нашли нули ф-ции. Далее отмечаем их на прямой, схематично показываем параболу и расставляем знаки промежутков:

Естественно, что в более сложных случаях могут использоваться всё те же методы решения нер-ва, которые применяются и в показательных ур-ниях. В частности, иногда приходится вводить новую переменную.

Задание. Найдите решение нер-ва

Решение. Для начала представим число 3х+1 как произведение:

Теперь перепишем с учетом этого исходное нер-во:

Получили дробь, в которой есть одна показательная ф-ция 3х. Заменим её новой переменной t = 3x:

Это , которое можно заменить равносильным ему целым нер-вом:

которое, в свою очередь, решается . Для этого найдем нули выражения, стоящего слева

Отмечаем найденные нули на прямой и расставляем знаки:

Итак, мы видим, что переменная t должна принадлежать промежутку (1/3; 9), то есть

Теперь произведем обратную замену t = 3x:

Так как основание 3 больше единицы, просто откидываем его:

Итак, мы узнали о показательных уравнениях и неравенствах и способах их решения. В большинстве случаев необходимо представить обе части равенства или неравенства в виде показательных степеней с одинаковыми основаниями. Данное действие иногда называют методом уравнивания показателей. Также в отдельных случаях может помочь графический способ решения ур-ний и замена переменной.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Вековой опыт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: