Иррациональные уравнения

Искусственные приемы решения иррациональных уравнений

Пример:

Примем новое неизвестное и положим, что Тогда и данное уравнение примет вид: ^-3(/ + 2 = 0.

Отсюда

Приняв , получим, что

Приняв затем . получим, что . Оба числа 8 и 1 являются корнями данного уравнения.

Пример:

Положим, что Тогда и Относительно нового неизвестного у данное уравнение примет вид:

Освободившись от корня, получим:

Отсюда

Значение следует отбросить, так как буквой у мы обозначили который отрицательных значений принимать не может.

Взяв у = 2 и подставив это значение неизвестного у в уравнение получим или Откуда

Числа 0 и 2 являются корнями первоначального уравнения. Других действительных корней данное уравнение не имеет.

Пример:

Подстановкой убеждаемся, что 1 не есть корень данного уравнения. Поэтому, разделив обе части уравнения на получим уравнение

равносильное данному.

После сокращения последнее уравнение принимает вид:

Обозначив через у, получим:

Отсюда

Следовательно,

или

Составим производную пропорцию, воспользовавшись тем, что сумма членов первого отношения так относится к их разности, как сумма членов второго отношения к их разности. Получим, что

т.е.

Замена иррационального уравнения системой

Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

Пример. Решите ур-ние

Решение. Заменим первый корень буквой u, а второй – буквой v:

Исходное ур-ние примет вид

u + v = 5 (3)

Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

х + 6 = u3 (4)

11 – х = v2 (5)

Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

(х + 6) + (11 – х) = u3 + v2

17 = u3 + v2 (6)

из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

17 = u3 + v2 (6)

17 = u3 + (5 – u)2

17 = u3 + u2– 10u + 25

u3 + u2 – 10u + 8 = 0

Получили кубическое ур-ние. Мы уже умеем решать их, . Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

u1 = 1; u2 = 2; u3 = – 4

подставим полученные значения в (4):

x + 6 = u3 (5)

x + 6 = 13 или х + 6 = 23 или х + 6 = (– 4)3

x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

х = – 5 или х = 2 или х = – 70

Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

Корень подошел. Проверяем следующее число, х = 2:

Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

Итак, все три числа прошли проверку.

Ответ: (– 5); 2; (– 70).

Уравнения с «вложенными» радикалами

Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0

Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

Возводим в квадрат и получаем:

х2 + 40 = (х + 4)2

х2 + 40 = х2 + 8х + 16

8х = 24

х = 3

И снова нелишней будет проверка полученного корня:

Корень подошел.

Ответ: 0; 3.

Учет ОДЗ

Помнишь, что такое ОДЗ?

Например, в уравнении \( \displaystyle \sqrt{x+2}=3\) присутствует квадратный корень. А квадратный корень не имеет смысла, если подкоренное выражение отрицательно. То есть, в данном случае ОДЗ – это решения неравенства \( \displaystyle x+2\ge 0\).

Нет необходимости искать ОДЗ в каждой задаче, содержащей корень.

Взять, например, задачу из предыдущей главы:

\( \displaystyle \sqrt{{{x}^{2}}+3x}=2\).

При возведении в квадрат получаем \( \displaystyle {{x}^{2}}+3x=4\), то есть подкоренное выражение автоматически неотрицательно! Так зачем лишняя писанина?

Но в некоторых случаях это может быть очень полезно. Более того, иногда можно решить пример, просто найдя ОДЗ!

Что такое иррациональные уравнения?

Не секрет же, что большинство чисел можно представить в виде обыкновенной дроби с натуральными числами в числителе и знаменателе?

Например, число 7 – это \(\frac{21}{3}\)

Иррациональные числа не такие. Их невозможно представить в виде дроби. Они странные.

Гиппас создал античным математикам множество проблем: их теории о том, что все в мире соизмеримо целым числам, рушились одна за другой. И они боялись.

Но мы будем смелыми

Сначала разберемся, что такое рациональные уравнения, а потом научимся находить решение иррациональных уравнений.

Итак, что из себя представляют рациональные уравнения, а что – иррациональные:

  • \( 3\cdot (x+1)=x\) – как думаешь, какое это? Тут сложение, умножение, нет корней, и степеней никаких – рациональное!
  • \( 3\cdot (x+1)=\sqrt{x}\) – вот тебе и корень из переменной, значит уравнение НЕ рациональное (или иррациональное);
  • \( 3\cdot (x+1)=\frac{1}{x}\) – а это – рациональное;
  • \( 3\cdot (x+1)={{x}^{2}}\) – тут вот степень, но она с целым показателем степени (\( 2\)– целое число) – значит, это тоже рациональное уравнение;
  • \( 3\cdot (x+1)={{x}^{-1}}\) – даже уравнение с отрицательным показателем степени тоже является рациональным, ведь, по сути, \( {{x}^{-1}}\) – это \( \frac{1}{x}\);
  • \( 3\cdot (x+1)={{x}^{0}}\) – тоже рациональное, т.к. \( {{x}^{0}}=1\);
  • \( 3\cdot (x+1)={{x}^{\frac{1}{2}}}\) – а с ним поосторожнее, степень-то дробная, а по свойству корней \( {{x}^{\frac{1}{2}}}=\sqrt{x}\), как ты помнишь, корня в рациональных уравнениях не бывает.

Надеюсь, теперь ты сможешь различить, к какому виду относится то или иное уравнение.

Дадим oпределение:

А вот как это выглядит: \( \sqrt{x}\); \( {{x}^{\frac{1}{3}}}\).

Но только отличать рациональное от иррационального недостаточно, тебе же решать их надо! Вся сложность в корнях, так?

Так избавься от них, вот и все дела!

Если еще не догадался, как, то я подскажу: просто возведи в нужную степень обе части уравнения, а потом решай его как простое рациональное уравнение.

Но проверяй все корни! Позже ты поймешь, почему делать это необходимо.

Как рациональные уравнения решать помнишь? Если забыл, то советую почитать «Рациональные уравнения».

Корни степени больше 2

Ты спросишь: а что всё про квадратные корни? Как же быть с остальными степенями?

Спрошу в ответ: а чем они отличаются?

Отличие, на самом деле, есть. Но важна не конкретная степень корня, а четность этой степени.

Корни четной степени

Корни \( \displaystyle 2\), \( \displaystyle 4\), \( \displaystyle 6\), и т.д. степеней очень похожи друг на друга, и принцип решения уравнений с ними абсолютно одинаковый. Дело в том, что корень четной степени можно всегда привести к квадратному (вспоминаем тему «Корень и его свойства»!):

Например:

Корни нечетной степени

С нечетными степенями (\( \displaystyle 3\), \( \displaystyle 5\), …) все намного проще!

Дело в том, что корень нечетной степени можно извлекать из любого числа! (И снова, если ты этого не знал, вспомни тему «Корень и его свойства»!)

Что это значит?

Теперь никаких дополнительных условий, никаких ограничений – просто возводим все в нужную степень и решаем:

Примеры:

  • \( \displaystyle \sqrt{2-x}=-2\)
  • \( \displaystyle \sqrt{3+2{x}-{{x}^{2}}+{{x}^{4}}}=x\)
  • \( \displaystyle \sqrt{{{x}^{3}}+3x+5}=x\)
  • \( \displaystyle \sqrt{6+{{x}^{2}}-{{x}^{3}}}=1-x\)

Простейшие иррациональные уравнения

Начнем с самого простого: уравнения вида \( \displaystyle \sqrt{x}=a\).

Например: \( \displaystyle \sqrt{x}=3\). Как его решить? Как избавиться от корня? Правильно, квадратный корень убирается возведением в квадрат:

\( \displaystyle \sqrt{x}=3\text{ }\Leftrightarrow \text{ }{{\left( \sqrt{x} \right)}^{2}}={{3}^{2}}\text{ }\Leftrightarrow \text{ }x=9\).

А как решить такое: \( \displaystyle \sqrt{x}=3\)?

И снова вспомним определение корня степени \( \displaystyle n\): \( \displaystyle \sqrt{x}\) – это такое число, которое нужно возвести в степень \( \displaystyle n\), чтобы получить \( \displaystyle x\). В данном случае эта степень равна \( \displaystyle 3\):

Итак, общее правило:

Хорошо, а что с этим: \( \displaystyle \sqrt{{{x}^{2}}}=4\)? Все просто: квадрат и корень уничтожаются, и получаем \( \displaystyle x=4\), верно?

Нет! Когда мы проходили корни, на это обращали особое внимание: здесь два корня – \( \displaystyle x=4\) и \( \displaystyle x=-4\), ведь \( \displaystyle \sqrt{{{\left( -4 \right)}^{2}}}=\sqrt{16}=4\). Не забываем правило:

Не забываем правило:

Реши сам:

Иррациональные уравнения вида √A=B

Наиболее распространённый тип иррациональных уравнений.

Рассмотрим пример:

Возводим обе части в квадрат:

Все верно? Это ответ?

Проверим корни:

\( \displaystyle x=2:\text{ }\sqrt{2+2}=2\text{ }\Leftrightarrow \text{ }\sqrt{4}=2\) – все и правда верно, \( \displaystyle x=2\) – подходящий корень.

\( \displaystyle x=-1:\text{ }\sqrt{-1+2}=-1\text{ }\Leftrightarrow \text{ }\sqrt{1}=-1\) – а вот здесь ошибка. Значит, корень \( \displaystyle x=-1\) – сторонний.

И правда, мы ведь помним, что результат извлечения квадратного корня всегда неотрицателен! Значит, прежде чем возводить в квадрат, нужно убедиться, что правая часть неотрицательна. Тоже своего рода ОДЗ.

Проверять же ОДЗ корня (\( \displaystyle A\ge 0\)) здесь снова не нужно (почему?).

Примеры:

  • \( \displaystyle \sqrt{4x+1}={x}-1\)
  • \( \displaystyle \sqrt{2{{x}^{2}}-3{x}-1}=x+3\)
  • \( \displaystyle \sqrt{2{x}-1}-\sqrt{x+2}=1\)

Ответы:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Вековой опыт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: