Как сокращать алгебраические дроби?

Дробь и ее виды

Обыкновенная или простая дробь — это число вида a/b , где a — числитель дроби, b — знаменатель дроби. Суть дроби можно объяснить на примере пирога – например, дробь ¼ означает один кусок пирога из 4-ех.

Правильная — дробь, у которой числитель меньше знаменателя (например, 1/5, 2/9).

Неправильная — дробь, у которой числитель больше или равен знаменателю (например, 7/2, 5/5).

Смешанная — дробь, записанная в виде целого числа и правильной дроби. Она представляет собой сумму этого числа и дроби. Любую неправильную дробь можно перевести в смешанную путем выделения целой части (например, 9/4 = 2 ¼).

Десятичная — дробь со знаменателем 10, 100, 1000 и т.д. (например, 7/10 или 0,7; 9/100 или 0,09). Десятичная дробь записывается в виде целой и дробной части, которые отделяются запятой.

Результат

Примеры упрощаемых выражений

  • Приведение слагаемых
  • Упрощение произведений
  • Сложные дроби со степенями
  • Разложение дроби на простейшие
  • Раскрытие скобок в выражении
  • Разложение на множители

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x), кубические корни cbrt(x)
  • тригонометрические функции: синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции: арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x), десятичные логарифмы log(x)
  • гиперболические функции: гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции: asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,помогите рассказать об этом сайте:

Пример 2. Вычтем дроби. Пример 3. Упростим выражение. Здесь удобно сложение и вычитание дробей выполнять неЗначит, и всякое рациональное выражение можно представить в виде рациональной дроби. Пример 1. Преобразуем в рациональную дробь. Алгоритм упрощения дробно-рациональных выражений. 1. Дробь можно упростить, разложив на множители ее числитель и знаменатель и сократив одинаковые множители: 2. Для сложения и вычитания дробей нужно привести их к общему знаменателю. Как упрощать алгебраические выражения. Упрощение алгебраических выражений является одним из ключевых моментов изучения алгебры и чрезвычайно полезным навыком для . Как упрощать составные дроби. Составная (многоэтажная) дробь является дробью, в числителе и/или в знаменателе которой есть дробь или несколько дробей. Упростить составную дробь можно быстро или не очень — это. Теперь рассмотрим упрощение более сложных рациональных выражений, т. е. выражений, в которых с алгебраическими дробями нужно выполнить. Продолжительность:

Сокращение алгебраической дроби

Алгебраическую дробь можно сокращать. При сокращении пользуются правилами сокращения обыкновенных дробей.

Напоминаем, что при сокращении обыкновенной дроби мы делили и числитель, и знаменатель на одно и тоже число.

Алгебраическую дробь сокращают таким же образом, но только числитель и знаменатель делят на один и тот же многочлен.

Рассмотрим пример сокращения алгебраической дроби.

Определим наименьшую степень, в которой стоит одночлен « a » . Наименьшая степень для одночлена « a » находится в знаменателе — это вторая степень.

Разделим, и числитель, и знаменатель на « a 2 ». При делении одночленов используем свойство степени частного.

Напоминаем, что любая буква или число в нулевой степени — это единица.

Нет необходимости каждый раз подробно записывать, на что сокращали алгебраическую дробь. Достаточно держать в уме степень, на которую сокращали, и записывать только результат.

Краткая запись сокращения алгебраической дроби выглядит следующим образом.

Сокращать можно только одинаковые буквенные множители.

Как сократить дробь с многочленами

Рассмотрим другой пример алгебраической дроби. Требуется сократить алгебраическую дробь, у которой в числителе стоит многочлен.

Сокращать многочлен в скобках можно только с точно таким же многочленом в скобках!

Ни в коем случае нельзя сокращать часть многочлена внутри скобок!

Правильно

Определить, где заканчивается многочлен, очень просто. Между многочленами может быть только знак умножения. Весь многочлен находится внутри скобок.

После того, как мы определили многочлены алгебраической дроби, сократим многочлен « (m − n) » в числителе с многочленом « (m − n) » в знаменателе.

Примеры сокращения алгебраических дробей с многочленами.

Сокращение алгебраических дробей

Сократить алгебраическую дробь — значит разделить ее числитель и знаменатель на общий множитель. Общий множитель числителя и знаменателя в алгебраической дроби — многочлен и одночлен.

Если в 7 классе только и разговоров, что об обыкновенных дробях, то 8 класс сокращает исключительно алгебраические дроби.

Сокращение дробей с буквами и степенями проходит в три этапа:

  1. Определите общий множитель.
  2. Сократите коэффициенты.
  3. Поделите все числители и все знаменатели на общий множитель.

Для сокращения степеней в дробях применяем правило деления степеней с одинаковыми основаниями:

Пример сокращения дроби со степенями и буквами:

  1. Следуя формуле сокращения степеней в дробях, сокращаем x3 и x2
  2. Всегда делим на наименьшее значение в степени
  3. Вычитаем: 3 — 1

Получаем сокращенную дробь.

Запоминаем: сокращать можно только одинаковые буквенные множители. Иными словами, сокращать можно только дроби с одинаковыми буквами.

Так нельзя Так можно

Примеры сокращения алгебраических дробей с одночленами:

Пример сокращения №1.

Как решаем:

  1. Общий множитель для числителя и знаменателя — 8.
  2. Х и x2 делим на x и получаем ответ.

Получаем сокращенную алгебраическую дробь.

Пример сокращения №2.

Как решаем:

  1. Общий множитель для числителя и знаменателя — 7.
  2. b3 и b делим на b.
  3. Вычитаем: 3 — 1 и получаем ответ.

Получаем сокращенную дробь.

§ 15. Упрощение дроби, числитель и знаменатель которой являются алгебраическими суммами дробей

Глава V. ПРЕОБРАЗОВАНИЕ ДРОБНЫХ АЛГЕБРАИЧЕСКИХ ВЫРАЖЕНИЙ.

На главную страницу Алгебра. Д.К. Фаддев, И.С. Соминский. Скачать оригинал Алгебра. Д.К. Фадеев, И.С. Соминский на странице Сборники Математики. Ниже можете посмотреть тексты для быстрого ознакомления (формулы отображаются не корректно).

Д. К. ФАДДЕЕВ и И. С. СОМИНСКИЙАЛГЕБРА

Упрощение дроби

Для упрощения дроби, числитель и знаменатель которой являются алгебраическими суммами дробей, следует умножить числитель и знаменатель на общее кратное знаменателей всех дробей, находящихся в числителе и знаменателе.

ЧП в семье Порошенко — сын попал в ДТП

§ 16. Общие выводы

В § 12—14 мы убедились в том, что сумму, разность, произведение и частное двух алгебраических дробей можно снова представить в виде алгебраической дроби или, в отдельных частных случаях, в виде многочлена. Отсюда следует, что любое дробное алгебраическое выражение может быть преобразовано к виду алгебраической дроби (или многочлена). Действительно, всякое дробное алгебраическое выражение есть запись результата действий сложения, вычитания, умножения и деления над числами и буквами. В результате первых по порядку действий сложения, вычитания и умножения мы придем к многочленам. В результате первого деления мы получим алгебраическую дробь. Результаты дальнейших действий над алгебраическими дробями будут представлять собой алгебраические дроби, и окончательный результат также будет алгебраической дробью. При этом возможно, что многочлен, находящийся в числителе дроби, поделится на многочлен, находящийся в знаменателе, и тогда окончательный результат преобразуется к виду многочлена

133 Алгебра Упрощение дроби, ПРЕОБРАЗОВАНИЕ ДРОБНЫХ АЛГЕБРАИЧЕСКИХ ВЫРАЖЕНИЙ

Как уже говорилось в гл. III, цепочка тождественных преобразований алгебраического выражения называется алгебраической выкладкой*. В результате изложенного в гд. Ill, IV, V мы видим, что алгебраическая выкладка может вестись в различных направлениях. При преобразовании целых алгебраических выражений** можно раскрывать скобки, можно, наоборот, производить вынесение за скобку, при выполнении Сложения многочлена и дроби можно сумму представить в виде одной дроби, а иногда бывает полезно выделение из данной дро^и целой части, что приводит к разложению данной дроби на сумму многочлена и дроби и т, д. Само собой разумеется, что алгебраическая выкладка должна? проводиться верно. Но этого недостаточно для полного овладения искусством алгебраической выкладки. Приведем: один очень грубый пример: (a — f b f = а* + 2 ab + й* = (а + Ь) Выкладка проведена верно, но бессмысленность ее бросается в глаза, Зачем было производить какие-то преобразования, чтобы вернуться к исходному выражению? Алгебраическая выкладка всегда должна быть направлена к определенной цели. В упражнениях цель бывает обычно указана в условии, например «разложить на множители», «сложить дроби» и т, д. Часто целью является упрощение данного алгебраического выражения. Но в применениях алгебры к решению практических задач нужно уметь найти цель в проведении выкладки. П р и м е р. При решении некоторой задачи в общем виде ответ получен в виде формулы .у = а* 4- Ь* . -Требуется вычислить х с точностью до ОД при а=?51, 62, 53, 54, 55 и при £ = 3, 4, 5. Решение . Здесь целесообразно сделать следующее преобразование: а* — Ь* + 2Ь* . . . 2Ь* По внешнему виду мы даже несколько усложнили ответ, но считать после преобразования становится много легче, так как мы избавились от необходимости возводить большое число а ^ квадрат, а затем делить большое число на й — Ь. Например, при а = 51, Ь = 3 по исходной формуле

134 Алгебра Упрощение дроби, ПРЕОБРАЗОВАНИЕ ДРОБНЫХ АЛГЕБРАИЧЕСКИХ ВЫРАЖЕНИЙ

В статье описаны математические дроби: основные виды дробей, их основное свойство, а также все операции, которые можно выполнять с дробями (сокращение, приведение, сравнение, сложение, вычитание, умножение и деление).

Вынесение общего множителя при сокращении дробей

При сокращении алгебраических дробей иногда не хватает одинаковых многочленов. Для того, чтобы они появились, вынесите общий множитель за скобки.

Чтобы легко и непринужденно выносить множитель за скобки, пошагово выполняйте 4 правила:

  1. Найдите число, на которое делятся числа каждого одночлена.
  2. Найдите повторяющиеся буквенные множители в каждом одночлене.
  3. Вынесите найденные буквенные множители за скобку.
  4. Далее работаем с многочленом, оставшимся в скобках.

Алгебра не терпит неточность. Всегда проверяйте, верно ли вынесен множитель за скобки — сделать это можно по правилу умножения многочлена на одночлен.

Для умножения одночлена на многочлен нужно умножить поочередно все члены многочлена на этот одночлен.

Пример 1.

Как решаем:

  1. Выносим общий множитель 6
  2. Делим 42/6
  3. Сокращаем получившиеся одинаковые многочлены.

Пример 2.

Как решаем: выносим общий множитель a за скобки и сокращаем оставшиеся в скобках многочлены.

Приведение дробей к несократимому виду

Смысл сокращения дробей в том, чтобы в результате сокращения в числителе и знаменателе оказались наименьшие из возможных чисел.

Так, в результате сокращения в примере 2, мы из дроби получили дробь

Выходит, что дробь выдержит еще одно сокращение и придет к виду

Сокращая дробь, стремитесь в итоге получить несократимую дробь.

Разделите числитель и знаменатель дроби на их НОД (наибольший общий делитель). Так вы приведете дробь к несократимому виду.

— несократимая дробь, так как по свойствам НОД мы знаем, что:

a : НОД(a, b) и b : НОД(a, b) — взаимно простые числа.

Два целых числа a и b называются взаимно простыми, если их наибольший общий делитель равен единице, НОД(a, b) = 1.

Несократимые дроби: ; ; ;

Пример 3. Приведите обыкновенную дробь к несократимому виду

Найдем НОД числителя и знаменателя. НОД = 12

Найдем частное: 12 : 12 = 1

36 : 12 = 3

= =

Сокращение выполнено: =

Пример 4. Приведите обыкновенную дробь к несократимому виду

Найдем НОД числителя и знаменателя. НОД = 5

Найдем частное: 15 : 5 = 3

25 : 5 = 5

= =

Сокращение выполнено: =

Алгоритм сокращения

Существующие дроби можно разделить на сократимые и несократимые. Сократить отношение — значит, разделить верхнюю и нижнюю часть на общий делитель. При этом его значение не должно быть равное единице. В итоге получится новое выражение с меньшим значением делителя и делимого. Например, пусть дана дробь 16 / 24. Числитель и знаменатель выражения можно разделить на восемь. В результате запись упростится до вида 16:8 / 24:8 = 2 / 3. Полученная дробь является уже несократимой и её дальнейшее упрощение невозможно.

Любое упрощение выражения можно представить в виде следующего алгоритма:

  • нахождение наибольшего общего делителя числителя и знаменателя;
  • деление делимого и делителя на найденное число;
  • получение несократимой дроби после выполнения операции.

Таким образом, суть действия сводится к нахождению такого сократителя, после применения которого она превратится в тождественную начальной, но уже станет несократимой. Наибольшим общим делителем (НОД) называют одночлен или многочлен, являющийся самым большим из всевозможных делителей, на которое числитель и знаменатель делится без остатка. Например, для чисел 12a и 24a НОД будет равный 12a.

Чтобы быстро найти НОД, нужно знать таблицу умножения и уметь раскладывать числа на простые множители. Ими называют числа, которые делятся на единицу и сами на себя. Существует даже таблица простых чисел до 997, с которой знакомят на уроках алгебры в 7 классе. Но многие натуральные числовые выражения могут делиться и на другие цифры без остатка. Например, двенадцать можно разделить на 1, 2, 3, 4, 6, и 12. Эти числа называют делителями.

При разложении используется запись в виде столбика с вертикальной чертой. В правой части пишут делимое, а в левой — исходное значение. Начинают пробовать делить на двойку, если действие невозможно, повышают значение делимого на единицу. Например, 45 = 3 * 3 * 5.

При поиске НОД каждый знаменатель раскладывают на простые множители, а затем находят одинаковые цифры и перемножают их. Полученный ответ и будет искомым сокращателем. Например, в числителе стоит число 24, а в знаменателе 42. Согласно правилу, их нужно разложить: 24 = 2 * 2 * 2 * 3 и 42 = 2 * 3 * 7. В одной и другой записи повторяются цифры три и два. Их произведение 2 * 3 = 6 и является НОД, на который и будет сокращаться дробное выражение. То есть 24:6 / 42:6 = 4 / 7. Полученная дробь является уже несократимой.

Математические дроби: сравнение

Если сравнивать две математические дроби с одинаковыми знаменателями, то больше та дробь, числитель которой больше (например, 5/6 > 1/6, то есть пять частей из шести будет больше, чем одна часть из шести).

Если сравнивать две математические дроби с одинаковыми числителями, то больше та дробь, знаменатель которой меньше (например, 1/2 > 1/3, то есть 1/2 часть пирога будет больше, чем 1/3).

Чтобы сравнить две обыкновенные дроби, следует привести дроби к общему знаменателю и сравнить числители получившихся дробей (например, для сравнения 3/4 и 5/6 нужно привести дроби к общему знаменателю; получаем 9/12 < 10/12)

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Вековой опыт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector