Уравнения высших степеней с одним неизвестным с примерами решения и образцами выполнения

Решение системы методом почленного сложения (вычитания) уравнений системы

В ходе решения систем линейных уравнений нужно стараться использовать не «школьный метод», а метод почленного сложения (вычитания) уравнений системы. Почему? Это экономит время и упрощает вычисления, впрочем, сейчас станет всё понятнее.

Пример 4

Решить систему линейных уравнений:

Я взял ту же систему, что и первом примере.
Анализируя систему уравнений, замечаем, что коэффициенты при переменной  одинаковы по модулю и противоположны по знаку (–1 и 1). В такой ситуации уравнения можно сложить почленно:

Действия, обведенные красным цветом, выполняются МЫСЛЕННО.
Как видите, в результате почленного сложения у нас пропала переменная . В этом, собственно, и состоит суть метода – избавиться от одной из переменных.

Теперь всё просто:  – подставляем в первое уравнение системы (можно и во второе, но это не так выгодно – там числа больше):

В чистовом оформлении решение должно выглядеть примерно так:

Ответ:

У некоторых явно возник вопрос: «Зачем все эти изыски, если можно просто выразить одну переменную через другую и подставить во второе уравнение?».

Пример 5

Решить систему линейных уравнений:
В данном примере можно использовать «школьный» метод, но большой минус состоит в том, что когда мы будем выражать какую-либо переменную из любого уравнения, то получим решение в обыкновенных дробях. А возня с дробями займет время, к тому же, если у Вас не «набита рука» на действиях с дробями, то велика вероятность допустить ошибку.

Поэтому целесообразно использовать почленное сложение (вычитание) уравнений. Анализируем коэффициенты при соответствующих переменных:

Как видим числа в парах (3 и 4), (4 и –3) – разные, поэтому, если сложить (вычесть) уравнения прямо сейчас, то от переменной мы не избавимся. Таким образом, хотелось бы видеть в одной из пар одинаковые по модулю числа, например, 20 и 20 либо 20 и –20.

Будем рассматривать коэффициенты при переменной :

Подбираем такое число, которое делилось бы и на 3 и на 4, причем оно должно быть как можно меньше. В математике такое число называется наименьшим общим кратным. Если Вы затрудняетесь с подбором, то можно просто перемножить коэффициенты:

Далее:
Первое уравнение умножаем на
Второе уравнение умножаем на

В результате:

Вот теперь из первого уравнения почленно вычитаем второе. На всякий случай привожу еще раз действия, которые проводятся мысленно:
Следует отметить, что можно было бы наоборот – из второго уравнения вычесть первое, это ничего не меняет.

Теперь подставляем найденное значение  в какое-нибудь из уравнений системы, например, в первое:

Ответ:

Решим систему другим способом. Рассмотрим коэффициенты при переменной

Очевидно, что вместо пары коэффициентов (4 и –3) нам нужно получить 12 и –12.
Для этого первое уравнение умножаем на 3, второе уравнение  умножаем на 4:

Почленно складываем уравнения и находим значения переменных:

Ответ:

Второй способ несколько рациональнее, чем первый, так как складывать проще и приятнее чем вычитать.

В высшей математике всегда стремимся складывать и умножать, а не вычитать и делить.

Пример 6

Решить систему линейных уравнений:

Это пример для самостоятельного решения (ответ в конце урока).

Продолжение урока на странице Правило Крамера. Метод обратной матрицы >>>

(Переход на главную страницу)

Общий вид решений линейного уравнения

Решим уравнение: $kx+b=0$

Очевидно, решение зависит от наших параметров $k$ и $b$, поэтому рассмотрим несколько сюжетов, которые встречаются при решении линейных уравнений.

Шаг 1.

Коэффициент при неизвестной $k$ будет равняться нулю, а свободный член $b$ отличным от нуля.

$$k=0, b\neq 0 \Rightarrow 0\cdot x=-b$$

Заметим, в этом случае не найдется такого числа $x$, что при подстановке его в уравнение — получится верное равенство. Т.к при умножении на 0 мы не получим число отличное от нуля, стало быть — решений нет.
Обычно это записывается так:
$$x\in \oslash$$
что переводится как: $x$ принадлежит пустому множеству.

Шаг 2.

Коэффициент при неизвестной и свободный член отличны от нуля:

$$k\neq 0, b\neq 0 \Rightarrow kx=-b \Rightarrow x=\frac{-b}{k}$$

Т.е. $x$ принимает действительное и единственное решение в виде отношения двух чисел: $-b$ и $k$

Шаг 3.

Числа $k$ и $b$ принимают значения равное нулю, т.е:

$$k=0, b=0 \Rightarrow kx=-b \Rightarrow 0\cdot x=0$$

Очевидно, что какой бы $x$ мы не взяли — равенство будет верным, т.к, при умножении на 0 получим 0.
Тогда говорят, что $x$ — любое число, либо $x$ принадлежит всем действительным числам. Запись имеет такой вид:

$$x\in \mathbb{R}$$

В данном случае решение можно записать несколькими способами, например с помощью двойного неравенства:

$$-\infty <x< \infty$$

Такая запись означает, что $x$ лежит в промежутке от минус бесконечности до плюс бесконечности. (Бесконечность это не число, поэтому неравенство строгое).
Еще можно написать ответ в виде интервала:

$$x\in(-\infty;\infty)$$

Знак “$\in$” можно заменить словом “принадлежит”, этот символ называется квантором принадлежности. Тогда говорят, что $x$ принадлежит любому числу из данного интервала.

И решением линейного уравнения называется — корень уравнения, а значит наша задача привести уравнение к виду:

$$x=…$$

Целое алгебраическое уравнение

Уравнение, в котором правая часть есть нуль, а левая — целая рациональная функция п-й степени, т. е.

называется целым алгебраическим уравнением п-й степени с одним неизвестным.

При п = 1 и п = 2 (как известно) это уравнение решается легко.

Вопрос о решении этого уравнения в общем виде при п = 3 и п = 4 освещен в конце настоящей главы. Вопрос же о решении уравнения (I) в общем виде при п > 4 изучается в специальных курсах современной алгебры. Корни уравнений степени выше 4-й не выражаются через коэффициенты уравнения посредством элементарных функций.

Наряду с этим обратная задача, т. е. задача составления уравнения п-й степени по данным его корням, решается легко.

В самом деле, пусть нам даны корни уравнения п-й степени. Тогда само уравнение может быть записано в виде

где — произвольное число, не равное нулю.

Раскрыв скобки и сгруппировав члены, содержащие одинаковые степени неизвестного, получим искомое уравнение в виде

где коэффициенты вполне определятся в зависимости от и от чисел .

Пример:

Составить уравнение 5-й степени по данным его корням:

Искомым уравнением будет:

Положив и раскрыв скобки, получим искомое уравнение в виде

Пример № 2

Пример уравнения для 4 класса со знаком минус.

Х – 180 = 240/3

Первым действием смотрим, что мы можем сделать в этом уравнении?  В данном примере мы можем разделить. Производим деление 240 разделить на 3 получаем 80. Переписываем уравнение ещё раз.

Х – 180 = 80 (выделила цифры зеленым маркером).

Теперь мы видим, что у нас есть х (неизвестное) и числа, только не рядом, а разделяет их знак равно. Х в одну сторону, цифры в другую.

Х = 80 + 180  Знак плюс ставим потому что при переносе числа, знак что был перед цифрой меняется на противоположный. Считаем.

Х = 260  Выполняем проверочную работу. Проверка покажет правильно ли мы решили уравнение. Вместо х вставляем число, которое получили.

Линейное неравенство с двумя переменными

Изучение неравенств с двумя переменными начнем с простейших из них – линейных неравенств. Их можно получить из линейных ур-ний, поставив вместо знака «=» один из четырех знаков сравнения.

Приведем примеры линейных неравенств с двумя переменными:

5х + 7у – 2 > 0

– 18,4x + 45,325y + 54,36 < 0

– 67х – 12у + 4 ⩾ 0

Линейные ур-ния и линейные нер-ва тесно связаны друг с другом. Напомним, что графиком линейного ур-ния

ах + by + c = 0

является прямая. Эта прямая разбивает всю плоскость на две полуплоскости. Для всех точек одной их них выполняется нер-во

ах + by + c< 0

а для всех точек другой полуплоскости справедливо нер-во

ах + by + c> 0

Пример. Отметьте на координатной прямой все решения неравенства с двумя переменными

3х + 2у < 6

Решение. Заменим знак «<»на знак «=» и получим ур-ние 3х + 2у = 6. Преобразовав его, мы получим функцию у(х)

3х + 2у = 6

2у = 6 – 3х

у = 3 – 1,5х

Построим этот график:

Видно, что прямая разбила плоскость на две части. Но в какой из них выполняется нер-во 3х + 2у < 6? Для ответа на этот вопрос достаточно взять координаты любой точки из одной из полуплоскостей и подставить их в нер-во. Конечно, проще всего взять точку (0; 0), в ней нер-во справедливо:

3•0 + 2•0 < 6

0 < 6

Поэтому область, в которой находится начало координат, можно заштриховать. Тем самым мы покажем, что на ней выполняется данное в условии нер-во:

Обратите внимание, что саму прямую 3х + 2у = 6 мы нарисовали пунктиром. Тем самым мы показали, что точки плоскости, лежащие непосредственно на этой прямой, НЕ входят в решение нер-ва, ведь оно является строгим

Пример. Покажите все решения нер-ва

– 2х + у + 4⩽ 0

Решение. Снова заменим знак сравнения в нер-ве на знак «=»:

– 2х + у + 4 = 0

у = 2х – 4

Получили график прямой. Сразу отметим, что в точке (0; 0) заданное нер-во НЕ выполняется:

– 2•0 + 0 + 4 ⩾ 0

а потому заштриховывать надо будет полуплоскость, к которой НЕ относится начало координат:

Здесь сама прямая – 2х + у + 4 = 0 отображена непрерывной линией. Тем самым показано, что ее точки входят в решение нер-ва, которое является нестрогим.

Последовательное применение правил

Зачастую на практике встречаются более сложные задачи, в которых правила нахождения слагаемых, уменьшаемых, вычитаемых, множителей, делимых и частных нужно применять последовательно. Приведем пример.

Пример 7

У нас есть уравнение вида 3·x+1=7. Вычисляем неизвестное слагаемое 3·x, отняв от 7 единицу. Получим в итоге 3·x=7−1, потом 3·x=6. Это уравнение решить очень просто: делим 6 на 3 и получаем корень исходного уравнения.

Вот краткая запись решения еще одного уравнения (2·x−7)3−5=2:

(2·x−7)3−5=2,(2·x−7)3=2+5,(2·x−7)3=7,2·x−7=7·3,2·x−7=21,2·x=21+7,2·x=28,x=282,x=14.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Квадратные уравнения

Квадратное уравнение — уравнение вида $ax^2 + bx + c = 0$, где $a, b, c$ — некоторые числа a$≠0$, $x$ — неизвестное. Перед тем как решать уравнение, необходимо раскрыть скобки и собрать все слагаемые в левой части уравнения.

Числа $a, b, c$ называются коэффициентами квадратного уравнения.

  • $a$ — старший коэффициент;
  • $b$ — средний коэффициент;
  • $c$ — свободный член.

Если в квадратном уравнении коэффициенты $b$ и $c$ не равны нулю, то уравнение называется полным квадратным уравнением. Например, уравнение $2x^2 – 8x + 3 = 0$. Если один из коэффициентов $b$ или $c$ равен нулю или оба коэффициента равны нулю, то квадратное уравнение называется неполным. Например, $5x^2 – 2x = 0$.

Решение неполных квадратных уравнений

Неполное квадратное уравнение имеет вид $ax^2 + bx = 0$, если $a$≠0$; $c$=0$. В левой части этого уравнения есть общий множитель $x$.

1. Вынесем общий множитель $x$ за скобки.

Мы получим $x (ax + b) = 0$. Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому получаем $x = 0$ или $ax + b =0$. Таким образом, данное уравнение эквивалентно двум уравнениям:

$x = 0; ax + b = 0$

2. Решаем получившиеся уравнения каждое отдельно.

Мы получим $x = 0$ и $x={-b}/{a}$. Следовательно, данное квадратное уравнение имеет два корня $x = 0$ и $x={-b}/{a}$

$4х^2 — 5х = 0$

Вынесем х как общий множитель за скобки:

$х (4х — 5) = 0$

Приравняем каждый множитель к нулю и найдем корни уравнения.

$x = 0$ или $4х — 5 = 0$

$х_1 = 0   х_2 = 1,25$

Ответ: $х_1 = 0; х_2 = 1,25$

Неполное квадратное уравнение вида $ax^2 + c = 0, a≠0, b=0$

Для решения данного неполного квадратного уравнения выразим $x^2$.

$ax^2 + c = 0$

$ax^2 = — c$

$x_2 = {-c}/{a}$

При решении последнего уравнения возможны два случая:

если ${-c}/{a}>0$, то получаем два корня: $x = ±v{{-c}/{a}}$

если ${-c}/{a}<0$, то уравнение во множестве действительных числе не имеет решений.

$x^2 — 16 = 0$

$x^2 = 16$

$x = ±4$

Ответ: $х_1 = 4, х_2 = — 4$

Решение с помощью дискриминанта

Дискриминантом квадратного уравнения D называется выражение

$b^2 — 4ac$.

При решении уравнения с помощью дискриминанта возможны три случая:

1. $D > 0$. Тогда корни уравнения равны:

$x_{1,2}={-b±√D}/{2a}$

2. $D = 0$. В данном случае решение даёт два двукратных корня:

$x_{1}=x_{2}={-b}/{2a}$

3. $D < 0$. В этом случае уравнение не имеет корней.

$3х^2 — 11 = -8х$

Соберем все слагаемые в левую часть уравнения и расставим в порядке убывания степеней

$3х^2 + 8х — 11 = 0$

$a = 3 ,b = 8, c = — 11$

$D = b^2- 4ac = 82- 4 · 3 · (-11) = 196 = 142$

$x_{1}={-b+√D}/{2a}={-8+14}/{6}=1$

$x_{2}={-b-√D}/{2a}={-8-14}/{6}=-3{2}/{3}$

Ответ: $x_1=1, x_2=-3{2}/{3}$

Устные способы

Если сумма коэффициентов равна нулю $(а + b + c = 0)$, то $х_1= 1, х_2={с}/{а}$

$4х^2+ 3х — 7 = 0$

$4 + 3 — 7 = 0$, следовательно $х_1= 1, х_2=-{7}/{4}$

Ответ: $х_1= 1, х_2 = -{7}/{4}$

Если старший коэффициент в сумме со свободным равен среднему коэффициенту $(a + c = b)$, то $х_1= — 1, х_2=-{с}/{а}$

$5х^2+ 7х + 2 = 0$

$5 + 2 = 7$, следовательно, $х_1= -1, х_2 =-{2}/{5}$

Ответ: $х_1= -1, х_2 = -{2}/{5}$

Кубические уравнения

Для решения простых кубических уравнений необходимо обе части представить в виде основания в третьей степени. Далее извлечь кубический корень и получить простое линейное уравнение.

$(x — 3)^3 = 27$

Представим обе части как основания в третьей степени

$(x — 3)^3 = $33

Извлечем кубический корень из обеих частей

$х — 3 = 3$

Соберем известные слагаемые в правой части

$x = 6$

Ответ: $х = 6$

Дробно рациональные уравнения

Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называется дробным.

Чтобы решить дробное уравнение, необходимо:

  1. найти общий знаменатель дробей, входящих в уравнение;
  2. умножить обе части уравнения на общий знаменатель;
  3. решить получившееся целое уравнение;
  4. исключить из его корней те, которые обращают в ноль общий знаменатель.

$4x + 1 — {3}/{x} = 0$

1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

$x≠0$

2. находим общий знаменатель дробей и умножаем на него обе части уравнения

$4x + 1 — {3}/{x}= 0¦· x$

$4x · x + 1 · x — {3·x}/{x} = 0$

3. решаем полученное уравнение

$4x^2 + x — 3 = 0$

Решим вторым устным способом, т.к. $а + с = b$

Тогда $х_1 = — 1, х_2 = {3}/{4}$

4. исключаем те корни, при которых общий знаменатель равен нулю В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Ответ: $х_1 = — 1, х_2 = {3}/{4}$

При решении уравнения с двумя дробями можно использовать основное свойство пропорции.

Основное свойство пропорции: Если ${a}/{b} = {c}/{d}$, то $a · d = b · c$

Правила уменьшения или увеличения уравнения на определенное число.

Чтобы понять правило рассмотрим подробно простой пример:
Решите уравнение x+2=7

Решение:
Чтобы решить данное уравнение нужно левую и правую часть уменьшить на 2. Это нужно сделать для того, чтобы переменная x осталась слева, а известные (т.е. числа) справа. Что значит уменьшить на 2? Это значит отнять от левой части двойку и одновременно от правой части отнять двойку. Если мы делаем какое-то действие, например, вычитание применяя его одновременно к левой части уравнения и к правой, то уравнение не меняет смысл.

x+2-2=7-2
x+0=7-2
x=7-2

Нужно остановиться на этом моменте подробно. Другими словами, мы +2 перенесли с левой части на правую и знак поменяли стало число -2.

x=5

Как проверить правильно ли вы нашли корень уравнения? Ведь не все уравнения будут простыми как данное. Чтобы проверить корень уравнения его значение нужно поставить в само уравнение.

Проверка:
Вместо переменной x подставим 5.

x+2=7
5+2=7
Получили верное равенство, значит уравнение решено верно.
Ответ: 5.

Разберем следующий пример:
Решите уравнение x-4=12.

Решение:
Чтобы решить данное уравнение нужно увеличить левую и правую часть уравнения на 4, чтобы переменная x осталось в левой стороне, а известные (т.е. числа) в правой стороне. Прибавим к левой и правой части число 4. Получим:

x-4+4=12+4
x=12+4

Другими словами, мы -4 перенесли из левой части уравнения в правую и получили +4. При переносе через равно знаки меняются на противоположные.

x=16

Теперь выполним проверку, вместо переменной x подставим в уравнение полученное число 16.
x-4=12
16-4=12
Ответ: 16

Очень важно понять правила переноса частей уравнения через знак равно. Не всегда нужно переносить числа, иногда нужно перенести переменные или даже целые выражения

Рассмотрим пример:
Решите уравнение 4+3x=2x-5

Решение:
Чтобы решить уравнение необходимо неизвестные перенести в одну сторону, а известные в другую. То есть переменные с x будут в левой части, а числа в правой части.
Сначала перенесем 2x с правой стороны в левую сторону уравнения и получим -2x.

4+3x=2x-5
4+3x-2x=-5

Далее 4 с левой стороны уравнения перенесем на правую сторону и получим -44+3x-2x=-5
3x-2x=-5-4

Теперь, когда все неизвестные в левой стороне, а все известные в правой стороне посчитаем их.
(3-2)x=-9
1x=-9 или x=-9

Сделаем проверку, правильно ли решено уравнение? Для этого вместо переменной x в уравнение подставим -9.
4+3x=2x-5
4+3⋅(-9)=2⋅(-9)-5
4-27=-18-5
-23=-23

Получилось верное равенство, уравнение решено верно.
Ответ: корень уравнения x=-9.

Из своей практики

Мальчик писал так, как хотел, вопреки существующим правилам по математике. При проверке уравнения были разные цифры и одно число (с левой стороны) не равнялось другому (то что с правой стороны), он тратил время на поиски ошибки.

При вопросе, почему он так делает? Был ответ, что он пытается угадать и думает, а вдруг сделает правильно.

В данном случае нужно каждый день (через день) решать подобные примеры. Довести действия до автоматизма и конечно все дети разные, дойти может не с первого занятия.

Если у родителей нет времени, а часто это так, потому что родители зарабатывают денежные средства, то лучше найти репетитора в своём городе, который сможет объяснить пройденный материал ребёнку.

Сейчас век ЕГЭ, тестов, контрольных работ, есть дополнительные сборники и методички. Делая за ребёнка домашние задания, родители должны помнить, что  на экзамене в школе их не будет. Лучше объяснить доходчиво ребёнку 1 раз, чтобы ребёнок смог самостоятельно решать примеры.

← Я-репетитор. Подработка в интернете и освоение профессииМасленица: дата празднования, история и традиции праздника. Рецепт блинов →

Равносильные уравнения

Рассмотрим три уравнения:

  1. $(x+2)(x-3)=0$

  2. $x(x+2)(x-3)=0$
    Уравнение (1) имеет два корня: $-2$ и $3$, а уравнение (2) — три корня: $0$, $-2$ и $3$. Каждый корень уравнения (1) является корнем уравнения (2), но не каждый корень уравнения (2) является корнем уравнения (1).

    При $x=0$ второе уравнение обращается в , а первое — нет.

  3. Уравнение $x(x+2)=3(x+2)$ имеет два корня: $-2$ и $3$.

Каждое решение уравнения (3) является решением уравнения (1) и каждое решение уравнения (1) является решением уравнения (3). Такие уравнения называются равносильными.

Понятие равносильности уравнений распространяется и на уравнения с несколькими переменными. Например, два уравнения с переменными $x$ и $y$ считаются равносильными, если каждое решение первого уравнения является решением второго и каждое решение второго уравнения служит решением первого.

Пусть первое уравнение $P(x)=0$, а второе $Q(x)=0$ и если они равносильны, то имеет место знак равносильности:

$$P(x)=0\Leftrightarrow Q(x)=0$$

В дальнейшем мы будем часто использовать такую символику.

Свойства равенств

Можно ли, не решая уравнений $2x-5=9$ и $2x=14$, утверждать, что они равносильны? Ответить на этот вопрос помогут нам хорошо известные свойства равенств. Перечислим их:

  1. Рефлексивность. Любое число равно самому себе: $a=a$.

  2. Симметричность. Если одно число равно другому, то это второе число равно первому: если $a=b$, то $b=a$.

  3. Транзитивность. Если первое число равно второму, а второе равно третьему, то первое число равно третьему: если $a=b$ и $b=c$, то $a=c$.
    Свойствами, аналогичными указанным свойствам равенств, обладают многие соотношения. Например, параллельность (в множестве прямых плоскости) обладает и .

    Действительно, если $a||b$, то $b||a$; если $a||b$ и $b||c$, то $a||c$. Равносильность уравнений обладает всеми тремя свойствами. В самом деле, каждое уравнение равносильно самому себе; если одно уравнение равносильно другому, то второе равносильно первому; если одно уравнение равносильно второму, а второе — третьему, то первое уравнение равносильно третьему.

    Приведем еще два свойства равенств, которые нам понадобятся дальше:

  4. Если к обеим частям верного равенства прибавить одно и тоже число, то получится верное равенство: если $a=b$, то

    $$a+c=b+c$$

  5. Если обе части верного равенства умножить на одно и то же число, то получится верное равенство: если $a=b$, то

    $$a\cdot c=b\cdot c$$

Примеры решения уравнений

Свойства равенств используются при решении уравнений. Покажем это на примере.

Показать решение

Решение:

Прибавим к левой и правой частям уравнения число $42$ (перенесем $-42$ в правую часть уравнения с противоположным знаком).

Получим уравнение: $6x=42$

Если при некотором значении $x$ равенство верно, то верно и равенство которое мы получили, и, наоборот, если при некотором значении $x$ верно равенство которое мы получили, то верно и исходное равенство. Это следует из свойства 4. Значит, уравнения равносильны.

$$6x-42=0\Leftrightarrow6x=42$$

Умножим обе части уравнения на $\frac{1}{6}$ (разделим на $6$). Получим уравнение: $x=7$

Из свойства 5. следует, что последние два уравнения равносильны:

$$6x=42 \Leftrightarrow x=7$$

Следовательно равносильны и уравнения (так как равносильность обладает свойством транзитивности): $6x-42=0 \Leftrightarrow x=7$

Значит число $7$ есть корень исходного уравнения.

Рассмотренный пример показывает, что перенос членов уравнения из одной его части в другую с противоположным знаком и умножение (или деление) обеих частей уравнения на неравное нулю число приводят к уравнению, равносильному данному.

Показать решение

Решение: $\frac{3}{4}x-\frac{5x}{16}=2$

Приведем все слагаемые левой части уравнения к общему знаменателю:

$$\frac{3x}{4}\cdot\frac{4}{4}-\frac{5x}{16}=2$$

$$\frac{12x}{16}-\frac{5x}{16}=2$$

$$\frac{12x-5x}{16}=2$$

$$\frac{7x}{16}=2$$

Домножим обе части равенства на $\frac{16}{7}$ чтобы избавиться от коэффициента при неизвестном, получим:

$$\frac{7x}{16}\cdot\frac{16}{7}=2\cdot\frac{16}{7}$$

Сократим числа $7$ и $16$, получим:

$$x=\frac{32}{7}$$

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

Как решаем:

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
        
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
        
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.
        

    1 + 2x = 5х

        
        

  4. Решим обычное уравнение.
        

    5x — 2х = 1

    3x = 1

    х = 1/3

        

Ответ: х = 1/3.

Пример 2. Найти корень уравнения

Как решаем:

  1. Область допустимых значений: х ≠ −2.
        
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
        
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.
        
        
        
  4. Переведем новый множитель в числитель..
        
        
        
  5. Сократим левую часть на (х+2), а правую на 2.
        

    4 = х + 2

    х = 4 — 2 = 2

        

Ответ: х = 2.

Пример 3. Решить дробное уравнение:

Как решаем:

  1. Найти общий знаменатель:
        

    3(x-3)(x+3)

        
        

  2. Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:
        

    3(x+3)(x+3)+3(x-3)(x-3)=10(x-3)(x+3)+3*36

        
        

  3. Выполним возможные преобразования. Получилось квадратное уравнение:
        

    x2-9=0

        
        

  4. Решим полученное квадратное уравнение:
        

    x2=9

        
        

  5. Получили два возможных корня:
        

    x1=−3, x2=3

    х = 4 — 2 = 2

        
        

  6. Если x = −3, то знаменатель равен нулю:
        

    3(x-3)(x+3)=0

    Если x = 3 — знаменатель тоже равен нулю.

        
        

  7. Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.

Ответ: нет решения.

Если нужно решить уравнение с дробями быстро — поможет онлайн-калькулятор дробей. Пользуйтесь им, если уже разобрались с темой и щелкаете задачки легко и без помощников:

  • Калькулятор раз
        
  • Два
        
  • Три
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Вековой опыт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector