Сравнение дробей
- Из двух дробей с одинаковыми знаменателями больше та, у которой числитель больше.
- Из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше.
Чтобы сравнить дроби с разными числителями и знаменателями, нужно:
- привести дроби к наименьшему общему знаменателю;
- сравнить полученные дроби.
![]()
Чтобы привести дроби к наименьшему общему знаменателю, нужно:
- найти наименьшее общее кратное (НОК) знаменателей дробей (оно и будет их общим знаменателем);
- разделить общий знаменатель на знаменатель данных дробей, т. е. найти для каждой дроби дополнительный множитель;
- умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.
![]()
Использование свойств вычитания при вычитании дробей
Для вычитания обыкновенных дробей справедливы все свойства вычитания натуральных чисел. Это следует из смысла, который мы придали обыкновенным дробям и операции вычитания дробей. Свойства вычитания позволяют вычислять значения выражений с дробями. Рассмотрим примеры.
Пример.
Вычислите значение выражения .
Решение.
Решения подобных примеров с натуральными числами разобраны в разделе . Здесь будем действовать аналогично.
Сначала вычислим разность , после чего от нее отнимем дробь 5/6. Итак, и . После выделения целой части из полученной неправильной дроби получаем .
Так выглядит краткая запись решения: .
Ответ:
.
Когда выражение содержит и натуральные числа и дроби, то при вычислении удобно группировать числа с числами, а дроби с дробями.
Пример.
Выполните вычитание суммы натурального числа и обыкновенной дроби из суммы натурального числа и обыкновенной дроби .
Решение.
Нам нужно вычислить разность . Свойства сложения и вычитания позволяют нам провести следующую группировку , что упрощает вычисления. Осталось лишь закончить вычисления: .
Ответ:
.
Список литературы.
- Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И. Математика: учебник для 5 кл. общеобразовательных учреждений.
- Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
Примеры умножения дробей с переменными
При умножении дробей числитель умножается на числитель, а знаменатель на знаменатель. Тогда можно применять свойство сокращения.
Пример 8
Произвести умножение дробей x+2·xx2·ln x2·ln x+1 и 3·x213·x+1-2sin2·x-x.
Решение
Необходимо выполнить умножение. Получаем, что
x+2·xx2·ln x2·ln x+1·3·x213·x+1-2sin(2·x-x)==x-2·x·3·x213·x+1-2×2·ln x2·ln x+1·sin (2·x-x)
Число 3 переносится на первое место для удобства подсчетов, причем можно произвести сокращение дроби на x2, тогда получим выражение вида
3·x-2·x·x13·x+1-2ln x2·ln x+1·sin (2·x-x)
Ответ: x+2·xx2·ln x2·ln x+1·3·x213·x+1-2sin(2·x-x)=3·x-2·x·x13·x+1-2ln x2·ln x+1·sin (2·x-x).
Сложение дробей, объяснение
Давайте более подробно разберем, как складывать обыкновенные и десятичные дроби.
Как видно на изображении выше, у дроби одна третья и две третьих общий знаменатель три. Значит требуется сложить только числители единицу и два, а знаменатель оставить без изменения. В итоге получается сумма три третьих. Такой ответ, когда числитель и знаменатель дроби равны, можно записать как 1, так как 3:3 = 1.
Требуется найти сумму дробей две третьих и две девятых. В этом случае знаменатели различны, 3 и 9. Чтобы выполнить сложение, нужно подобрать общий. Есть очень простой способ. Выбираем наибольший знаменатель, это 9. Проверяем делится ли он на 3. Так как 9:3 = 3 без остатка, следовательно 9 подходит как общий знаменатель.
Следующим шагом находим дополнительные множители для каждого числителя. Для этого общий знаменатель 9 делим поочередно на знаменатель каждой дроби, полученные числа и будут допол. множ. Для первой дроби: 9:3 = 3, дописываем к числителю первой дроби 3. Для второй дроби: 9:9 = 1, единицу можно не дописывать, так как при умножении на нее получится то же самое число.
Теперь умножаем числители на их дополнительные множители и складываем результаты. Полученная сумма дробь восемь девятых.
Сложение десятичных дробей выполняется по тому же правилу, что и сложение натуральных чисел. В столбик, разряд записывается под разрядом. Единственное отличие в том, что в десятичных дробях нужно правильно поставить запятую в результате. Для этого дроби записываются запятая под запятой, и в сумме требуется лишь снести запятую вниз.
Найдем сумму дробей 38, 251 и 1, 56. Чтобы было удобнее выполнять действия, мы уровняли количество десятичных знаков справа, добавив 0.
Складываем дроби не обращая внимания на запятую. А в полученной сумме просто опускаем запятую вниз. Ответ: 39, 811.
Вычитание смешанных дробей
Чтобы вычесть одно смешанное число из другого смешанного числа, надо, если это возможно, от целого отнять целое, а от дроби отнять дробь.
Пример
Задание. Найти разность $6 \frac{7}{11}-2 \frac{1}{22}$
Решение. Выполним вычитание по описанному выше правилу
$$6 \frac{7}{11}-2 \frac{1}{22}=(6-2)+\left(\frac{7^{2}}{11}-\frac{1}{22}\right)=$$
$$=4+\frac{7 \cdot 2-1 \cdot 1}{22}=4+\frac{14-1}{22}=4+\frac{13}{22}=4 \frac{13}{22}$$
Ответ. $6 \frac{7}{11}-2 \frac{1}{22}=4 \frac{13}{22}$
В случае, когда дробь вычитаемого больше, чем дробь уменьшаемого, поступают следующим образом: берут одну единицу
(целое) из целого числа уменьшаемого, записывают его как неправильную дробь, числитель и знаменатель которой равны между
собой и равны знаменателю дробной части, и прибавляют к дробной части, далее отнимают две смешанные дроби, как описано выше.
Пример
Задание. Выполнить вычитание $5 \frac{4}{9}-1 \frac{11}{12}$
Решение. Дробь $\frac{4}{9}$ меньше (
сравнение дробей ), чем дробь $\frac{11}{12}$ (так как $4 \cdot 12 = 36 < 9 \cdot 11 = 99$ ), тогда
$$5 \frac{4}{9}-1 \frac{11}{12}=5+\frac{4}{9}-1 \frac{11}{12}=4+1+\frac{4}{9}-1 \frac{11}{12}=$$
$$=4+\frac{9}{9}+\frac{4}{9}-1 \frac{11}{12}=4 \frac{9+4}{9}-1 \frac{11}{12}=4 \frac{13}{9}-1 \frac{11}{12}=$$
$$=(4-1)+\left(\frac{13^{4}}{9}-\frac{11^{3}}{12}\right)=3+\frac{13 \cdot 4-11 \cdot 3}{36}=$$
$$=3+\frac{52-33}{36}=3+\frac{19}{36}=3 \frac{19}{36}$$
Ответ. $5 \frac{4}{9}-1 \frac{11}{12}=3 \frac{19}{36}$
Аналогичным образом поступают, когда надо вычесть из целого числа дробное.
Пример
Задание. Найти разность
$4-3 \frac{3}{5}$
Решение. Выполним вычитание дробей по описанному выше правилу
$$4-3 \frac{3}{5}=3+1-3 \frac{3}{5}=3+\frac{5}{5}-3 \frac{3}{5}=3 \frac{5}{5}-3 \frac{3}{5}=$$
$$=(3-3)+\left(\frac{5}{5}-\frac{3}{5}\right)=0+\frac{5-3}{5}=\frac{2}{5}$$
Ответ. $4-3 \frac{3}{5}=\frac{2}{5}$
Замечание. Производить операции со
смешанными числами можно и иначе: записать смешанное число в виде
неправильной дроби и уже работать далее как с
обыкновенными дробями.
Читать следующую тему: умножение дробей.
Правила выполнения действий с числовыми дробями общего вида
Числовые дроби общего вида имеют числитель и знаменатель, в которых имеются натуральные числа или числовые выражения. Если рассмотреть такие дроби, как 35, 2,84, 1+2·34·(5-2), 34+782,3-,8, 12·2, π1-23+π, 2,5ln 3, то видно, что числитель и знаменатель может иметь не только числа, но и выражения различного плана.
Определение 1
Существуют правила, по которым идет выполнение действий с обыкновенными дробями. Оно подходит и для дробей общего вида:
- При вычитании дробей с одинаковыми знаменателями складываются только числители, а знаменатель остается прежним, а именно: ad±cd=a±cd, значения a, c и d≠ являются некоторыми числами или числовыми выражениями.
- При сложении или вычитании дроби при разных знаменателях, необходимо произвести приведение к общему, после чего произвести сложение или вычитание полученных дробей с одинаковыми показателями. Буквенно это выглядит таком образом ab±cd=a·p±c·rs, где значения a, b≠, c, d≠, p≠, r≠, s≠ являются действительными числами, а b·p=d·r=s. Когда p=d и r=b, тогда ab±cd=a·d±c·db·d.
- При умножении дробей выполняется действие с числителями, после чего со знаменателями, тогда получим ab·cd=a·cb·d, где a, b≠, c, d≠ выступают в роли действительных чисел.
- При делении дроби на дробь первую умножаем на вторую обратную, то есть производим замену местами числителя и знаменателя: abcd=ab·dc.
Как считать разность десятичных дробей столбиком
Вычитание столбиком – быстрый и наглядный способ узнать разность конечных десятичных дробей. Процесс подсчета очень схож с аналогичным для натуральных чисел.
Определение 1
Чтобы подсчитать разность десятичных дробей столбиком, необходимо:
- если в указанных десятичных дробях отличается количество знаков после запятой, уравняем его. Для этого допишем к нужной дроби нули;
- запишем вычитаемую дробь под уменьшаемой, разместив значения разрядов строго друг под другом, а запятую под запятой;
- выполним подсчет столбиком так же, как мы это делаем для натуральных чисел, запятую при этом игнорируем;
- в ответе отделим нужное количество чисел запятой так, чтобы она располагалась на том же месте.
Разберем конкретный пример использования этого метода на практике.
Пример 4
Найдите разность 4 452,294-10,30501.
Решение
Для начала выполним первый шаг – уравняем количество десятичных знаков. Допишем два нуля в первую дробь и получим дробь вида 4 452,29400, значение которой идентично исходной.
Запишем получившиеся числа друг под другом в нужном порядке, чтобы получился столбик:
Считаем как обычно, игнорируя запятые:
В получившемся ответе поставим запятую в нужном месте:
Подсчеты окончены.
Наш результат : 4 452,294−10,30501=4 441,98899.
Вычитание дроби из целого числа
Встречаются задачи, в которых требуется вычесть дробь из целого числа. Например, вычесть из числа 1 дробь . Чтобы решить такой пример, нужно целое число 1 представить в виде дроби , и выполнить вычитание дробей с разными знаменателями:
Если имеется одна целая пицца и мы вычтем из неё половину пиццы, то у нас получится половина пиццы:
Пример 2. Найти значение выражения .
Представим число 2 в виде дроби , и выполним вычитание дробей с разными знаменателями:
Если имеются две целые пиццы и мы вычтем из низ половину, то останется одна целая и половина пиццы:
Такие примеры можно решать в уме. Достаточно суметь воспроизвести их в своём воображении. К примеру, найдём значение выражения , не приводя на бумаге никаких вычислений.
Представим, что число 3 это три пиццы:
Нужно вычесть из них . Мы помним, что треть выглядит следующим образом:
Теперь представим, во что превратятся три пиццы, если отрезать от них эту треть
Получилось (две целых и две трети пиццы).
Чтобы убедиться в правильности решения, можно найти значение выражения обычным методом, представив число 3 в виде дроби, и выполнив вычитание дробей с разными знаменателями:
Пример 3. Найти значение выражения
Представим число 3 в виде дроби . Затем выполним вычитание дробей с разными знаменателями:
Как научить ребенка легко решать дроби с помощью лего
С помощью такого конструктора можно не только хорошо развивать воображение ребенка, но и объяснить наглядно в игровой форме, что такое доля и дробь.
На картинке ниже показано, что одна часть с восемью кружками это целое. Значит, взяв пазл с четырьмя кружками, получается половина, или 1/2. На картинке наглядно показано, как решать примеры с лего, если считать кружки на деталях.
![]()
Вы можете построить башенки из определенного количества частей и подписать каждую из них, как на картинке ниже. Например возьмем башенку из семи частей. Каждая часть зеленого конструктора будет 1/7. Если вы к одной такой части добавите еще две, то получится 3/7. Наглядное объяснение примера 1/7+2/7 = 3/7.
![]()


















































