Сокращение алгебраических дробей: правило, примеры

Правило сокращения дробей

Чтобы без труда сокращать любую обыкновенную дробь, запомните правило.

Выполняйте сокращение дробей по следующему алгоритму:

  1. Найдите НОД числителя и знаменателя дроби.
  2. Разделите числитель и знаменатель дроби на НОД.

В 6 классе каждая вторая задачка — с дробями. Чтобы легко управляться с ними и уметь сокращать любые числа, нужно хорошо потренироваться. Давайте разберем еще несколько примеров сокращения обыкновенных дробей.

Чтобы легко сокращать дроби, нужно уметь быстро находить НОД числителя и знаменателя. Для этого неплохо бы знать таблицу умножения и уметь раскладывать числа на простые множители.

Например, дана дробь

Чтобы найти НОД числителя и знаменателя, разложим числа на простые множители.
36 = 2 * 2 * 3 * 3
84 = 2 * 2 * 3 * 7

Перемножаем все общие множители между собой 2 * 2 * 3 = 12.
НОД 36 и 84 = 12.

Пример 5. Сократите дробь

Разложим числа в числителе и знаменателе на множители.
135 = 9 * 3 * 5
180 = 9 * 2 * 2 * 5

Мысленно убираем все общие множители и перемножаем оставшиеся.

= =

Сокращение выполнено: =

Пример 6. Сократите обыкновенную дробь

Найдем НОД числителя и знаменателя. НОД = 9

18 : 9 = 2

81 : 9 = 9

= =

Сокращение выполнено: =

Дробь можно сократить, последовательно сокращая числитель и знаменатель на общий делитель. Такой способ подходит, если в числителе и знаменателе стоят крупные числа, и вы не уверены в подобранном НОД.

Пример 6. Сократите дробь:

= = =

Сокращение выполнено: =

Пример 7. Сократите дробь

Найдем НОД, разложив числитель и знаменатель на простые множители.

168 = 2 * 2 * 2 * 3 * 7

240 = 2 * 2 * 2 * 2 * 3 * 5

Перемножаем все общие множители между собой 2 * 2 * 2 * 3 = 24

НОД 168 и 240 равен 24

Следующим шагом разделим числитель и знаменатель дроби на их наибольший общий делитель: 168 : 24 = 7

240 : 24 = 10

= =

Сокращение выполнено: =

Пример 8. Сократите дробь

Найдем НОД, разложив числитель и знаменатель на простые множители.

360 = 2 * 2 * 2 * 3 * 3 * 5

540 = 2 * 2 * 3 * 3 * 3 * 5

Перемножаем все общие множители между собой 2 * 2 * 3 * 3 * 5 = 180

НОД 360 и 540 равен 180

Следующим шагом разделим числитель и знаменатель дроби на их наибольший общий делитель: 360 : 180 = 2

540 : 180 = 3

= =

Сокращение выполнено: =

Пример 8. Сократите дробь

Найдем НОД, разложив числитель и знаменатель на простые множители.

420 = 2 * 2 * 3 * 5 * 7

2520 = 2 * 2 * 2 * 3 * 3 * 5 * 7

Перемножаем все общие множители между собой 2 * 2 * 3 * 5 * 7 = 420

НОД 420 и 2520 равен 420

Следующим шагом разделим числитель и знаменатель дроби на их наибольший общий делитель: 420 : 420 = 1

2520 : 420 = 6

= =

Сокращение выполнено. Дробь приведена к несократимому виду: =

Пример 9. Сократите дробь

Найдем НОД, разложив числитель и знаменатель на простые множители.

1575 = 3 * 3 * 5 * 5 * 7

3450 = 2 * 3 * 5 * 5 * 23

Перемножаем все общие множители между собой 3 * 5 * 5 = 75

НОД 1575 и 3450 равен 72

Следующим шагом разделим числитель и знаменатель дроби на их наибольший общий делитель: 1575 : 75 = 21

3450 : 75 = 46

= =

Сокращение выполнено. Дробь приведена к несократимому виду: =

Иногда разложение на простые множители занимает немало времени, особенно если раскладываемые числа большие, как в двух предыдущих примерах. Чтобы быстро разложить любое число на простые множители, можно обратиться к онлайн-калькулятору — в интернете их много. Воспользуйтесь одним из них.

Если времени совсем не хватает — можно использовать онлайн-калькулятор и для нахождения НОД. Однако не стоит постоянно прибегать к калькулятору для решения задач, пока вы не научитесь уверенно и быстро вычислять сами.

Свойства дроби

По сути, сократить дробь — значит, её упростить. Можно использовать разный алгоритм, но в любом случае применяется основное свойство отношений. Заключается оно в том, что если делитель или делимое умножить на одно и то же число, то количественное значение в ответе не изменится. Это правило справедливо и при замене операции умножения на деление.

Алгебраически свойство можно записать в виде равенства: (q * c) / (r * c) = q / r. Для объяснения этого правила используется следующее доказательство. Пусть имеется равенство (q * r) * c = (c * r) * q. Оно возможно, так как соответствует закону умножения натуральных чисел. При этом учитывается свойство деления, согласно которому, если число разделить на равное ему значение, то результатом действия будет единица. Например, с / с = 1 или 12к/12k = 1. Последнее правило довольно логичное и интуитивно понятное. Если представить, что есть число вещей, равное x, и их нужно разложить на кучки так, чтобы в каждой оказалось x предметов, то очевидно, что получится лишь одна кучка.

Исходя из этих двух правил, можно утверждать, что выражения q * c / r * c и q : c / r : c равны q / r. То есть эти два выражения равны друг другу. На уроках математики в школе предлагают графическую иллюстрацию основного свойства. Пусть есть квадрат, который набран из девяти других квадратов. Каждый из них, в свою очередь, разделён на четыре части. Можно утверждать, что основная фигура поделена на 9 * 4 = 36 частей.

Если закрасить пять больших квадратов другим цветом, то фактически будет окрашено 20 квадратов меньшего размера (4 * 5). Отмеченная область составляет 5/9 от целого квадрата или 20/36, если считать маленькие фигуры. Но так как окрашенная часть одна, то справедливо будет утверждать о верности равенства 5 / 9 = 20 / 36. Вместо чисел 20 и 36 можно подставить их произведения. В итоге получится выражение: 5 / 9 = 5 * 4 / 9 * 4 = 20 * 4 / 36 * 4 = 20 / 36. Что и следовало доказать.

Использование онлайн-калькулятора

Воспользоваться возможностью сократить дробь на онлайн-калькуляторе сможет любой пользователь интернета. Такую услугу бесплатно предоставляют несколько десятков специализированных сайтов. Неоспоримое их преимущество заключается в быстром и правильном упрощении любого дробного выражения. При этом от пользователя не требуется никаких математических знаний.

Всё что необходимо, это подключение к сети и веб-браузер с поддержкой Flash плеера. Пользователю нужно просто зайти на сайт и в предложенную форму ввести упрощаемую формулу, а затем нажать виртуальную кнопку «Рассчитать». Программа сделает все вычисления самостоятельно, используя оптимальный алгоритм.

Кроме того, на этих сайтах содержится теоретический материал. Он часто подкреплён примерами. Причём даётся не просто ответ, а приводится вся цепочка вычислений, по которой можно разобраться в сути действий.

Из доступных сайтов можно выделить несколько, наиболее популярных среди пользователей:

  • Kontrolnaya-rabota. Сервис поддерживает введение выражений, содержащих как буквенные части, так и числовые. После вычисления приводятся не только пошаговые действия, но и даются пояснения к каждой операции.
  • Calcs. Сайт имеет простой интерфейс, но в то же время содержит всю необходимую для расчёта информацию. Страницы онлайн-калькулятора не загромождены рекламными баннерами и ненужной информацией. Недостаток его в том, что сайт не понимает степени.
  • Calc. Онлайн-расчётчик позволяет сокращать любые виды дробей и находить их части. После введения выражения калькулятор выдаёт ответ буквально за несколько секунд и приводит подробное решение. Калькулятор также позволяет рассчитывать и отрицательные дроби.

Что значит сократить дробь?

Мы знаем, что обыкновенные дроби подразделяются на сократимые и несократимые дроби. По названиям можно догадаться, что сократимые дроби можно сократить, а несократимые – нельзя.

Что же значит сократить дробь? Сократить дробь – это значит разделить ее числитель и знаменатель на их положительный и отличный от единицы . Понятно, что в результате сокращения дроби получается новая дробь с меньшим числителем и знаменателем, причем, в силу основного свойства дроби, полученная дробь равна исходной.

Для примера, проведем сокращение обыкновенной дроби 8/24, разделив ее числитель и знаменатель на 2. Иными словами, сократим дробь 8/24 на 2. Так как 8:2=4 и 24:2=12, то в результате такого сокращения получается дробь 4/12, которая равна исходной дроби 8/24 (смотрите ). В итоге имеем .

Дробь и ее сокращение

Что это такое, знает каждый ученик. Любые две цифры расположенные между горизонтальной чертой сразу воспринимаются, как дробь. Однако не все понимают, что ею может стать любое число. Если оно целое, то его всегда можно разделить на единицу, тогда получится неправильная дробь. Но об этом позже.

Начало всегда простое. Сначала нужно выяснить, как сократить правильную дробь. То есть такую, у которой числитель меньше, чем знаменатель. Для этого потребуется вспомнить основное свойство дроби. Оно утверждает, что при умножении (так же, как и делении) одновременно ее числителя и знаменателя на одинаковое число получается, равноценная исходной дробь.

Действия деления, которые выполняются в этом свойстве и приводят к сокращению. То есть максимальному ее упрощению. Дробь можно сокращать до тех пор, пока над чертой и под ней есть общие множители. Когда их уже не будет, то сокращение невозможно. И говорят, что эта дробь несократимая.

Сложные выражения

Многочлены, стоящие в числителе или знаменателе, имеющие первую степень, сокращать довольно легко. Но часто в задании попадаются степенные выражения. Для того чтобы их упростить, нужно хорошо знать основные формулы и свойства степеней. Заключаются они в следующем:

  • При умножении степеней с одинаковым основанием последнее остаётся без изменения, а показатели складываются: i2 * i4 = i6.
  • При делении степеней с равным основанием из показателя числителя вычитается степень, стоящая в знаменателе: i4 / i3 = i1.
  • Для возведения степени в степень показатели перемножаются: (i2)4 = i8.
  • Для того чтобы выполнить произведение в степени, необходимо каждый член, стоящий в скобках, возвести отдельно в указанный показатель: (i * q)n = in * qn.
  • Чтобы раскрыть скобки в степени, при делении нужно возвести в степень отдельно числитель и знаменатель: (i / q) n = sn / qn.

Зная эти свойства, можно приступать непосредственно к решению примеров. Например, пусть дано выражение: 147 * 282 / 79 * 24. Для упрощения дроби следует рассуждать следующим образом. Число четырнадцать можно представить как семь, умноженное на два, а двадцать восемь — как семь, умноженное на четыре. То есть, используя свойства степеней, можно записать равенство: 147 * 282 / 79 * 24 = (27 * 77 * 72 * 42) / (79 * 24).

Можно увидеть, что в числителе находится два одночлена с одинаковым основанием. Это две цифры семь, которые можно объединить: (27 * 79 * 42) / (79 * 24). В делимом и делителе теперь находится одинаковое число 79, на которое можно сократить, то есть исключить из формулы. После преобразования выражение примет вид: 27 * 42 / 24. Два в степени семь разделить на два в степени четыре даст в ответе два в степени три. Таким образом, дробь превращается в простой одночлен: 23 * 42 = 23 * 22 * 22 = 27 = 128.

В заданиях могут встречаться рациональные и простые числа, известные и неизвестные. Решают их таким же образом. Например, нужно сократить дробь со степенями и буквами: ((0,25 ) p +1 * 8p) / (22p+1 * (0,5)p-1) = (0,25p * 0,251 * 8p) / (22p * 21 * 0,5p:0,51) = (1 / 4)p * 0,25 * 8k / 4p * 4 * 0,5p = 2p * 0,25 / 2p * 4 = 0,25 / 4 = (1/4) / 4 = 1 / 4* 4 = 1/16.

Смотря на этот пример, можно понять важность упрощения дробей. Ведь из задания, практически недоступного для решения, получилось простейшее наглядное выражение

Но при этом может случиться так, что исходная формула будет довольно сложна для предварительного анализа, например, содержать квадратный корень, экспоненту или логарифм. Для таких случаев есть резон использовать специализированные сайты-вычислители.

Неправильные сократимые и несократимые дроби.

Чтобы перевести неправильную сократимую дробь в неправильную несократимую дробь, мы пользуемся теми же правилами, что и для правильной сократимой дроби. Рассмотрим пример:

Запишите неправильную сократимую дробь в виде неправильной несократимой дроби \(\frac{32}{20}\).

Решение:
Разложим числитель и знаменатель на простые множители.
32=2⋅2⋅2⋅2⋅2
20=5⋅2
Общий множитель у числителя и знаменателя равен 2. Распишем

Ответ: получили несократимую неправильную дробь \(\frac{16}{5}\).

Вопросы по теме:Как узнать сократима ли дробь?
Ответ: чтобы узнать сократима ли дробь для начала нужно расписать числитель и знаменатель на простые множители, а потом посмотреть если у них общие множители, если есть, то дробь сократима, иначе – несократима. Рассмотрим пример.

Определите сократима ли дробь \(\frac{16}{25}\).

Решение:
Распишем числитель и знаменатель на простые множители.
16=2⋅2⋅2⋅2
25=5⋅5
Видно, что у числителя и знаменателя нет общих множителей (одинаковых множителей), следовательно, дробь несократима.

Пример:
Сколько несократимых правильных дробей: а) \(\frac{8}{25}\) б) \(\frac{6}{4}\) в) \(\frac{13}{5}\) г) \(\frac{36}{44}\).

Решение:
а) У числителя и знаменателя дроби \(\frac{8}{25}\)  (8=2⋅2⋅2, 25=5⋅5) нет общих множителей, поэтому это правильная несократимая дробь. По условию это дробь нам подходит.

б) У числителя и знаменателя дроби \(\frac{6}{4}\) (6=2⋅3, 4=2⋅2, \(\frac{6}{4}=\frac{2 \times 3}{2 \times 2}=\frac{3}{2}\) ) есть общий множитель равный 2, поэтому это дробь сократимая и еще неправильная, потому что числитель больше знаменателя. По условию задания эта дробь нам не подходит.

в) Числитель и знаменатель дроби \(\frac{13}{5}\), 5 и 13 простые числа, поэтому общих множителей кроме 1 у них нет, дробь несократимая. Так как числитель больше знаменателя дробь неправильная, поэтому по условию задания нам она не подходит.

г) Числитель и знаменатель дроби \(\frac{36}{44}\) (36=2⋅2⋅3⋅3, 44=2⋅2⋅11) имеют общий множитель равный 4, поэтому дробь \(\frac{36}{44}=\frac{4 \times 9}{4 \times 11}=\frac{9}{11}\) является сократимой, правильной. Нам по условию задания не подходит.

Ответ: \(\frac{8}{25}\) несократимая, правильная дробь.

Пример:
Сколько имеется правильных несократимых дробей со знаменателем: а) 145 б) 123 в) 133 г) 115.

Решение:
а) Распишем на простые множители знаменатель 145:
145=5⋅29
Нужно исключить все числа от 1 до 144 кратные 5 и 29.
На 5 делится: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140.
На 29 делится: 29, 58, 87, 116.
В сумме получаем 32 числа, которые имеют общий множитель с число 145. Всего у нас чисел 144.
144-32=112
Ответ: 112 правильных несократимых дробей со знаменателем 145.

б) Распишем на простые множители знаменатель 123:
123=3⋅41
В диапазоне чисел от 1 до 122 исключаем числа кратные 3 и 41.
На число 3 делится, поэтому не могут находиться в числителе: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120.
На 41 делится: 41, 82.
В сумме получаем 40+2=42 числа, которые имеют общий множитель с число 123, поэтому мы их исключим. Всего у нас чисел 122.
122-42=80
Ответ: 80 правильных несократимых дробей со знаменателем 123.

в) Распишем на простые множители знаменатель 133:
133=7⋅19
Числа от 1 до 132 исключаем, они делятся на 7 и 19, для того чтобы получить все несократимые дроби от \(\frac{1}{133}\) до \(\frac{132}{133}\).
Число 7 кратно: 7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126. Всего 18 чисел.
Число 19 кратно:19, 38, 57, 76, 95, 114. Всего 6 чисел.
132-18-6=108
Ответ: 108 правильных несократимых дробей со знаменателем 133.

г) Распишем на простые множители знаменатель 115:
115=5⋅23
Числа от 1 до 114 исключаем.
На 5 делится: 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110. Всего 22 числа.
На 23 делится число: 23, 46, 96, 92. Всего 4 чисел.
114-22-4=88
Ответ: 88 правильных несократимых дробей со знаменателем 115.

Нестандартная задача по математике:
Когда нельзя сокращать сократимую обыкновенную дробь?

Ответ: когда сократимая обыкновенная дробь является номером углового дома или квартала.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Вековой опыт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: