Задачи на пропорции

Microsoft Math Solver — ГДЗ можно получить без книжек

Бесплатная программа от Майкрософт представлена в магазинах App Store и Google Market. Ее можно загрузить как на телефоны, так и на планшеты.

Приложение включает в себя:

  • Технологию оптического распознавания текста. Сделайте снимок примера на камеру смартфона и вы получите подробное решение.
  • Ручной ввод на калькуляторе. Большая библиотека символов позволяет создавать примеры разнообразных уровней сложности.
  • Пишите на экране смартфона пальцем или стилусом. Алгоритмы Math Solver распознают текст и постараются решить предложенную вами задачу.

Как учить ребенка решать задачи, если математика ему трудно дается

Доказано, что школьный курс математики способен освоить любой школьник, у которого нормально развита логика и работают мыслительные процессы. Зачастую родители предпочитают считать, что если ребенку трудно дается математика, то у него просто гуманитарный склад ума и эта дисциплина ему не нужна.

Важно!Такая точка зрения в корне неверна, поскольку именно математика развивает логическое и критичное мышление, без которых ни один гуманитарий не может быть успешным.

акцентировать внимание на смысле фраз, а не числах;
учить малыша отличать главную и второстепенную информацию;
использовать рисование схем, моделей решения;
применять цветовую гамму для создания контраста известных и неизвестных величин;
описывать вместо условий задания ситуации, знакомые ребенку в его жизненном опыте;
привлекать внимание к возможности применить знание математических действий и правил в реальной жизни;
использовать образы и условных героев-помощников.

Только индивидуальный и креативный подход в обучении поможет школьнику, который испытывает трудности с арифметикой, перебороть свои страхи и научиться решать различные задания.

Как быстро выучить всю алгебру

Наши рекомендации для тех, кто хочет выучить все темы по алгебре:

  • Составьте программу подготовки. Определите цель (подтянуть знания, подготовиться к экзамену), напишите чек-лист с перечнем тем, которые вы будете изучать, выберите учебные материалы (книги, рабочие тетради, сборники задач и пр.). Строго придерживайтесь плана и занимайтесь регулярно, например, 1-2 раза в неделю.
  • Ведите конспекты по каждому параграфу, так как при письме информация запоминается лучше. Например, чтобы быстро выучить формулы сокращенного умножения, можно вручную сделать таблицу, а затем распечатать ее и повесить над рабочим столом.
  • Разбирайте задания на примерах. Если вы учитесь в онлайн-школе, то преподаватель покажет разные способы решения задач. Если вы занимаетесь самостоятельно, пользуйтесь задачниками с готовыми ответами, смотрите видеоразборы на Youtube или просите помощь у одноклассников.

Ниже расскажем подробнее о том, как выучить алгебру за короткий срок.

За лето

Если хотите подтянуть алгебру за лето, то занимайтесь на онлайн-курсах. Не придется подстраиваться под жесткий график, но вы сможете выделить 1-2 часа в неделю для видеоуроков. С помощью курсов вы повторите все темы прошедшего учебного года или изучите новый материал.

Подходящие программы есть, к примеру, в онлайн-школе «Фоксфорд»:

  • Базовые курсы для 7, 8, 9, 10, 11 классов – около 30 уроков в записи с домашними заданиями. Если вы будете смотреть по 2-3 урока в неделю, то пройдете весь онлайн-курс за время летних каникул.
  • Интенсив по математике – 4 видеоурока, на которых повторяют школьную программу по каждому классу.
  • Мини-курс «Векторный метод в пространстве» для 10-11 классов, на котором рассказывают про базовые операции над векторами, скалярное или векторное произведение. Состоит из 4 видеолекций.

За месяц

За 4-5 недель вы не успеете подготовиться к экзамену, но сможете повторить пройденный материал, чтобы сдать годовую контрольную. А также этого времени хватит, чтобы закрыть пробелы в знаниях.

3 совета, как выучить алгебру за месяц:

  • Сначала изучите теорию и только после этого переходите к практике. Разберитесь с терминами и определениями, посмотрите примеры решений. Если вы часто допускаете ошибки при расчетах, значит, не понимаете тему. Еще раз перечитайте страницы учебника.
  • Занимайтесь ежедневно – достаточно 30-40 минут на то, чтобы решить пару задач. Лучше тренироваться регулярно, а не сидеть над книгами по 3-4 часа лишь раз в неделю.
  • Не стесняйтесь задавать вопросы. Если вы не поняли какую-то тему, то можете обратиться за помощью к родителям, одноклассникам, школьному учителю или репетитору.

За неделю

За неделю вы успеете повторить все темы, которые изучали в течение четверти или полугодия. Рекомендации от преподавателей — что можно сделать за 5-7 дней:

  • Составьте список всех пройденных тем и выполните упражнения по каждой. Затем нужно сравнить свое решение с правильным ответом, после чего сделать упор на те задачи, с которыми справляетесь хуже всего.
  • Не зазубривайте материал, а запоминайте теоремы или формулы на конкретных примерах. Вам необходимо освоить хотя бы основные алгоритмы.
  • Делайте перерывы в учебе. Многие школьники откладывают подготовку на последний момент, а затем сидят над учебниками по несколько часов ежедневно. Лучше оптимально распределить нагрузку и чередовать алгебру с другими занятиями.

Реально ли подтянуть знания в более короткие сроки

Если вы хотите подтянуть знания по алгебре, чтобы написать контрольную или сдать ЕГЭ, то начинайте подготовку заранее. Накануне ответственного события вы можете выделить 2-3 часа на то, чтобы повторить пройденный материал.

Но изучить новые темы за 1 день вы не успеете. Поэтому не стоит проводить всю ночь над книгами. Лучше как следует выспаться и морально подготовиться. За 5-10 минут до урока можно полистать конспекты по предыдущей теме, а вот перед сдачей экзамена желательно ничего не читать.

Квадратные уравнения

Квадратное уравнение — уравнение вида $ax^2 + bx + c = 0$, где $a, b, c$ — некоторые числа a$≠0$, $x$ — неизвестное. Перед тем как решать уравнение, необходимо раскрыть скобки и собрать все слагаемые в левой части уравнения.

Числа $a, b, c$ называются коэффициентами квадратного уравнения.

  • $a$ — старший коэффициент;
  • $b$ — средний коэффициент;
  • $c$ — свободный член.

Если в квадратном уравнении коэффициенты $b$ и $c$ не равны нулю, то уравнение называется полным квадратным уравнением. Например, уравнение $2x^2 – 8x + 3 = 0$. Если один из коэффициентов $b$ или $c$ равен нулю или оба коэффициента равны нулю, то квадратное уравнение называется неполным. Например, $5x^2 – 2x = 0$.

Решение неполных квадратных уравнений

Неполное квадратное уравнение имеет вид $ax^2 + bx = 0$, если $a$≠0$; $c$=0$. В левой части этого уравнения есть общий множитель $x$.

1. Вынесем общий множитель $x$ за скобки.

Мы получим $x (ax + b) = 0$. Произведение равно нулю, если хотя бы один из множителей равен нулю. Поэтому получаем $x = 0$ или $ax + b =0$. Таким образом, данное уравнение эквивалентно двум уравнениям:

$x = 0; ax + b = 0$

2. Решаем получившиеся уравнения каждое отдельно.

Мы получим $x = 0$ и $x={-b}/{a}$. Следовательно, данное квадратное уравнение имеет два корня $x = 0$ и $x={-b}/{a}$

$4х^2 — 5х = 0$

Вынесем х как общий множитель за скобки:

$х (4х — 5) = 0$

Приравняем каждый множитель к нулю и найдем корни уравнения.

$x = 0$ или $4х — 5 = 0$

$х_1 = 0   х_2 = 1,25$

Ответ: $х_1 = 0; х_2 = 1,25$

Неполное квадратное уравнение вида $ax^2 + c = 0, a≠0, b=0$

Для решения данного неполного квадратного уравнения выразим $x^2$.

$ax^2 + c = 0$

$ax^2 = — c$

$x_2 = {-c}/{a}$

При решении последнего уравнения возможны два случая:

если ${-c}/{a}>0$, то получаем два корня: $x = ±v{{-c}/{a}}$

если ${-c}/{a}<0$, то уравнение во множестве действительных числе не имеет решений.

$x^2 — 16 = 0$

$x^2 = 16$

$x = ±4$

Ответ: $х_1 = 4, х_2 = — 4$

Решение с помощью дискриминанта

Дискриминантом квадратного уравнения D называется выражение

$b^2 — 4ac$.

При решении уравнения с помощью дискриминанта возможны три случая:

1. $D > 0$. Тогда корни уравнения равны:

$x_{1,2}={-b±√D}/{2a}$

2. $D = 0$. В данном случае решение даёт два двукратных корня:

$x_{1}=x_{2}={-b}/{2a}$

3. $D < 0$. В этом случае уравнение не имеет корней.

$3х^2 — 11 = -8х$

Соберем все слагаемые в левую часть уравнения и расставим в порядке убывания степеней

$3х^2 + 8х — 11 = 0$

$a = 3 ,b = 8, c = — 11$

$D = b^2- 4ac = 82- 4 · 3 · (-11) = 196 = 142$

$x_{1}={-b+√D}/{2a}={-8+14}/{6}=1$

$x_{2}={-b-√D}/{2a}={-8-14}/{6}=-3{2}/{3}$

Ответ: $x_1=1, x_2=-3{2}/{3}$

Устные способы

Если сумма коэффициентов равна нулю $(а + b + c = 0)$, то $х_1= 1, х_2={с}/{а}$

$4х^2+ 3х — 7 = 0$

$4 + 3 — 7 = 0$, следовательно $х_1= 1, х_2=-{7}/{4}$

Ответ: $х_1= 1, х_2 = -{7}/{4}$

Если старший коэффициент в сумме со свободным равен среднему коэффициенту $(a + c = b)$, то $х_1= — 1, х_2=-{с}/{а}$

$5х^2+ 7х + 2 = 0$

$5 + 2 = 7$, следовательно, $х_1= -1, х_2 =-{2}/{5}$

Ответ: $х_1= -1, х_2 = -{2}/{5}$

Кубические уравнения

Для решения простых кубических уравнений необходимо обе части представить в виде основания в третьей степени. Далее извлечь кубический корень и получить простое линейное уравнение.

$(x — 3)^3 = 27$

Представим обе части как основания в третьей степени

$(x — 3)^3 = $33

Извлечем кубический корень из обеих частей

$х — 3 = 3$

Соберем известные слагаемые в правой части

$x = 6$

Ответ: $х = 6$

Дробно рациональные уравнения

Рациональное уравнение, в котором левая или правая части являются дробными выражениями, называется дробным.

Чтобы решить дробное уравнение, необходимо:

  1. найти общий знаменатель дробей, входящих в уравнение;
  2. умножить обе части уравнения на общий знаменатель;
  3. решить получившееся целое уравнение;
  4. исключить из его корней те, которые обращают в ноль общий знаменатель.

$4x + 1 — {3}/{x} = 0$

1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

$x≠0$

2. находим общий знаменатель дробей и умножаем на него обе части уравнения

$4x + 1 — {3}/{x}= 0¦· x$

$4x · x + 1 · x — {3·x}/{x} = 0$

3. решаем полученное уравнение

$4x^2 + x — 3 = 0$

Решим вторым устным способом, т.к. $а + с = b$

Тогда $х_1 = — 1, х_2 = {3}/{4}$

4. исключаем те корни, при которых общий знаменатель равен нулю В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

Ответ: $х_1 = — 1, х_2 = {3}/{4}$

При решении уравнения с двумя дробями можно использовать основное свойство пропорции.

Основное свойство пропорции: Если ${a}/{b} = {c}/{d}$, то $a · d = b · c$

Плюсы и минусы самостоятельного изучения алгебры с нуля

Если у вас нет больших пробелов в знании школьной программы, то можно заниматься алгеброй самостоятельно. В интернете вы можете бесплатно скачать разные учебные материалы: электронные учебники, рабочие тетради, схемы, задачники, онлайн-тесты и пр.

Самообучение – это самый доступный способ подготовки, так как не нужно оплачивать услуги репетитора, согласовывать время, подстраиваться под расписание преподавателя и т. д. Но выучить алгебру с нуля самому будет сложно, особенно если вы учитесь в 8-9 классе, когда большая часть материала уже пройдена.

Минусы самостоятельного обучения:

  • Трудно придерживаться графика. Дополнительные занятия сложно совмещать с уроками в школе, спортивными секциями и кружками, а гаджеты, видеоигры или встречи с друзьями сильно отвлекают от учебы.
  • Некому проверить домашнее задание и ответить на вопросы. Придется искать ответы в интернете, тратить время на поиски, читать форумы, проверять достоверность информации и т. д.
  • Тяжело самому разобраться со сложными темами. Можно заучить формулы и пользоваться ими для решения типовых задач. Но вряд ли вы научитесь самостоятельно решать задания повышенной сложности.

Математика 1-10 класс


Математика       1 класс       |      2 классМатематика       3 класс       |      4 классМатематика       5 класс       |      6 классМатематика       7 класс       |      8 класс Математика       9 класс       |      10 класс

Краткая история математики

Академиком А. Н. Колмогоровым предложена такая структура истории математики: — Период зарождения математики, на протяжении которого был накоплен достаточно большой фактический материал;- Период элементарной математики, начинающийся в VI — V веках до н. э. и завершающийся в конце XVI века («Запас понятий, с которыми имела дело математика до начала XVII века, составляет и до настоящего времени основу „элементарной математики“, преподаваемой в начальной и средней школе»);- Период математики переменных величин, охватывающий XVII — XVIII века, «который можно условно назвать также периодом „высшей математики“»;- Период современной математики — математики XIX — XX века , в ходе которого математикам пришлось «отнестись к процессу расширения предмета математических исследований сознательно, поставив перед собой задачу систематического изучения с достаточно общей точки зрения возможных типов количественных отношений и пространственных форм».

Развитие математики началось вместе с тем, как человек стал использовать абстракции сколько-нибудь высокого уровня. Простая абстракция — числа; осмысление того, что два яблока и два апельсина, несмотря на все их различия, имеют что-то общее, а именно занимают обе руки одного человека, — качественное достижение мышления человека. Кроме того, что древние люди узнали, как считать конкретные объекты, они также поняли, как вычислять и абстрактные количества, такие, как время, сезоны, года. Из элементарного счёта естественным образом начала развиваться арифметика: сложение, вычитание, умножение и деление чисел.

Задачи 8 класс

Задача 1

Из 38 учащихся 28 посещают хор и 17 лыжную секцию. Сколько лыжников посещает хор, если в классе нет учащихся, которые не посещают хор или лыжную секцию? Решение: 7 человек. Хор не посещают 10 человек, все они лыжники. Лыжников всего 17 человек, значит 7 человек надо «взять» из хора.

Задача 2

Окружность касается квадрата извне и «катится» по нему без скольжения. Сколько полных оборотов сделает эта окружность около своего центра и какой путь пройдет центр окружности к моменту возвращения в исходную точку, если длина стороны квадрата равна длине окружности и радиус окружности равен а см? Те же вопросы, если окружность «катится» по сторонам равностороннего треугольника. Решение: в случае квадрата каждая точка окружности сделает 4 оборота около своего центра. Центр окружности сделает четверть оборота около каждой вершины квадрата. За один обход центр окружности совершает путь, равный 5*2Па см. В случае треугольника — соответственно 3 оборота и 8Па см

Задача 3

Во время похода палатки расположились в т. А,В, и С. В каком месте удобно выбрать площадку для проведения общего костра, чтобы расстояние от него до палаток было одинаковым? Решение: точка осей симметрии точек А и В и точек В и С будет искомой.

Задача 4

Найдите произведение всех целых чисел от (-99) до 99. Решение: 0

Задача 5

Две семьи выехали каждая на машине «Жигули» на прогулку одновременно из одного места. Обе семьи проехали на машинах одинаковые расстояния и вернулись домой в одно и то же время. В пути они отдыхали. Первая семья была в пути в двое больше времени, чем вторая. Вторая была в пути втрое больше времени. Чем отдыхала первая. Какая из этих семей двигалась на машине быстрее? Решение: 1-я семья: 2х часов — время на езду, у часов — время на отдых. 2-я семья: часов — время на езду, х часов — время на отдых 2х + у = 3у + х; х = 2у. Вторая семья отдыхала в два раза больше, чем первая следовательно, она ехала быстрее первой.

Задача 6

Какой цифрой оканчивается сумма 92007 + 92006 ? Решение: 92007 + 92006 = 92006( 9 + 1) = 92006* 10. Нулем.

Понятие пропорции

Чтобы решать задачи на тему пропорции, вспомним главное определение.

Пропорция в математике — это равенство между отношениями двух или нескольких пар чисел или величин.

Главное свойство пропорции:

Произведение крайних членов равно произведению средних.

a : b = c : d,

где a, b, c, d — члены пропорции, a, d — крайние члены, b, c — средние члены.

Вывод из главного свойства пропорции:

  • Крайний член равен произведению средних, которые разделены на другой крайний. То есть для пропорции a/b = c/d:
  • Средний член равен произведению крайних, которые разделены на другой средний. То есть для пропорции a/b = c/d:

Решить пропорцию — значит найти неизвестный член. Свойство пропорции — главный помощник в решении.

Запомним!
Равенство двух отношений называют пропорцией.

Рассмотрим легкие и сложные задачи, которые можно решить с помощью пропорции

5, 6, 7, 8 класс — неважно, всем школьникам полезно проанализировать занимательные задачки

Как научить ребенка решать логические задачи по математике

Такая разновидность заданий дает возможность развивать логику детей и позволяет им обретать навыки нестандартного мышления. Постановка логических задач часто предполагает изобретение особого способа их решения, но все же существуют некоторые разработанные методы их решения, которым и следует обучить школьников:

  • метод рассуждений;
  • таблицы истинности;
  • метод блок — схем;
  • средства алгебры высказываний;
  • графический метод;
  • математический бильярд.

На заметку!Для начальной школы лучше всего подходит метод рассуждений и табличный способ.

При использовании рассуждений важно разделить условие задания на маленькие фрагменты и сделать последовательные выводы из каждого из них, таким образом ребенок приходит к ответу. Данный вариант решения можно также применять, начиная с конца условия, что тоже приводит к решению, но другим путем

Применение таблиц истины дает возможность разделить все данные в тексте задачи на истинные и ложные, сравнить их наглядным образом и сделать соответствующие умозаключения о варианте ответа.

Для успешного овладения навыками решения математических головоломок детям требуется разный подход и приемы в зависимости от возраста и индивидуальных особенностей.

Как правильно научить ребёнка решать задачи

Если ребёнок только начинает осваивать навык решения задач, приучите его придерживаться определённого алгоритма.   

1. Внимательно читаем условия  

Лучше вслух и несколько раз. После того как ребёнок прочитал задачу, задайте ему вопросы по тексту и убедитесь, что ему понятно, что вычислять нужно количество грибов, а не огурцов. Старайтесь не нервничать, если ребёнок упустил что-то из вида. Дайте ему разобраться самостоятельно. Если в условиях упоминаются неизвестные ребёнку реалии — объясните, о чём идёт речь.

Особую сложность представляют задачи с косвенным вопросом, например:

«Один динозавр съел 16 деревьев, это на 3 меньше, чем съел второй динозавр. Сколько деревьев съел второй динозавр?». Невнимательно прочитав условия, ребёнок посчитает 16−3, и получит неправильный ответ, ведь эта задача на самом деле требует не вычитания, а сложения.        

2. Делаем описание задачи

В решении некоторых задач поможет представление данных в виде схемы, графика или рисунка. Чем ярче сложится образ, тем проще будет его осмыслить. Наглядная запись позволит ребёнку не только быстро разобраться в условиях задачи, но и поможет увидеть связь между ними. Часто план решения возникает уже на этом этапе. 

Ребёнок должен чётко понимать значения словесных формул и знать, какие математические действия им соответствуют.  


Формы краткой записи условий задач / shkola4nm.ru‍

3. Выбор способа решения

Наглядно записанное условие должно подтолкнуть ребёнка к нахождению решения. Если этого не произошло, попробуйте задать наводящие вопросы, проиллюстрировать задачу при помощи окружающих предметов или разыграть сценку. Если один из способов объяснения не сработал — придумайте другой. Многократное повторение одного и того же вопроса неэффективно. 

Все, даже самые сложные, математические задачи сводятся к принципу «из двух известных получаем неизвестное». Но для нахождения этой пары чисел часто требуется выполнить несколько действий, то есть разложить задачу на несколько более простых. 

Ребёнок должен знать способы получения неизвестных данных из двух известных:

  • слагаемое = сумма − слагаемое
  • вычитаемое = уменьшаемое − разность
  • уменьшаемое = вычитаемое + разность
  • множитель = произведение ÷ множитель
  • делитель = делимое ÷ частное
  • делимое = делитель × частное

После того как план действий найден, подробно запишите решение. Оно должно отражать всю последовательность действий — так ребёнок сможет запомнить принцип и пользоваться им в дальнейшем. 

4. Формулировка ответа

Ответ должен быть полным и точным. Это не просто формальность: обдумывая ответ, ребёнок привыкает серьёзно относиться к результатам своего труда. А главное — из описания должна быть понятна логика решения.


Задание из базового курса алгебры домашней онлайн-школы «Фоксфорда», 7 класс‍

Одна из самых распространённых ошибок — представление в ответе не тех данных, о которых спрашивалось изначально. Если такая проблема возникает, нужно вернуться к первому пункту.   

5. Закрепление результата

Не стоит думать, что выполнив задание один раз, ребёнок сразу научится решать задачи. Полученный результат нужно зафиксировать. Для этого подумайте над решённой задачей ещё немного: предложите ребёнку поискать другой способ решения или спросите, как изменится ответ при изменении того или иного параметра в условии.

Важно, чтобы у ребёнка сложился чёткий алгоритм рассуждений и действий в каждом из вариантов. 

В нашей онлайн-школе, помимо уроков, ученики могут закреплять  свои знания на консультациях в формате открытых часов, где учителя разбирают темы, вызвавшие затруднения, показывают необычные задачи и различные способы их решения. 

<<Форма курс 5-11>>

Формула корней для четных вторых коэффициентов

Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

Например, нам нужно решить квадратное уравнение ax2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n)2- 4ac = 4n2 — 4ac = 4(n2- ac) и подставим в формулу корней:

Для удобства вычислений обозначим выражение n2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

где D1 = n2- ac.

Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

  • вычислить D1= n2- ac;
  • если D1< 0, значит действительных корней нет;
  • если D1= 0, значит можно вычислить единственный корень уравнения по формуле;
  • если же D1> 0, значит можно найти два действительных корня по формуле

Упрощаем вид квадратных уравнений

Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11×2 — 4 x — 6 = 0, чем 1100×2 — 400x — 600 = 0.

Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100×2 — 400x — 600 = 0, просто разделив обе части на 100.

Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

Покажем, как это работает на примере 12×2- 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2×2 — 7x + 8 = 0. Вот так просто.

А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x2 + 4x — 18 = 0.

Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2×2- 3x + 7 = 0 перейти к решению 2×2 + 3x — 7 = 0.

Связь между корнями и коэффициентами

Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

Например, можно применить формулы из теоремы Виета:

  • x₁ + x₂ = — b/a,
  • x₁* x₂ = c/a.

Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3×2- 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

А еще найти корни квадратного уравнения можно с помощью онлайн-калькулятора. Пользуйтесь им, если уже разобрались с темой и щелкаете задачки легко и без помощников:

  • Калькулятор раз
  • Два
  • Три

Как получить координаты точки функции

С любого графика функции можно снять координаты точки. Затем необходимо убедиться, что при подстановке координат
в формулу функции получается верное равенство.

Рассмотрим функцию «». Её график
мы уже
строили
.

Найдем на графике функции «», чему равен «»
при .

Для этого из значения «» на оси «» проведем перпендикуляр к графику функции.
Из точки пересечения перпендикуляра и графика функции проведем еще один перпендикуляр к оси «».

Полученное значение «» на оси «» и будет искомым значением «».

Убедимся, что мы правильно сняли координаты точки для в функции «».

Для этого мы подставим в формулу функции
«». Если мы правильно
провели перпендикуляр, мы также должны получить в итоге .

При расчетах мы также получили .

Значит, мы правильно получили координаты с графика функции.

Важно!

Все полученные координаты точки с графика функции обязательно проверяйте
подстановкой значений «» в функцию.

При подстановке числового значения «» в функцию в результате должно получиться
то же значение «», которое вы получили на графике.

При получении координат точек с графика функции высока вероятность, что вы ошибетесь, т.к. проведение перпендикуляра к осям выполняется «на глазок».

Только подстановка значений в формулу функции дает точные результаты.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Вековой опыт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: