Простой измеритель индуктивности

Введение

Если бы кому-нибудь пришла в голову идея провести опрос населения Земли на тему «Что вы знаете об индуктивности?», то подавляющее число опрашиваемых просто пожало бы плечами. А ведь это второй по многочисленности вслед за транзисторами технический элемент, на котором зиждется современная цивилизация! Любители детективов, припомнив, что в своей юности зачитывались захватывающими рассказами сэра Артура Конан Дойла о приключениях знаменитого сыщика Шерлока Холмса, с разной степенью уверенности пробормочут что-то о методе, которым вышеозначенный сыщик пользовался. При этом подразумевая метод дедукции, который, наравне с методом индукции, является основным методом познания в западной философии Нового времени.

При методе индукции происходит исследование отдельных фактов, принципов и формирование общих теоретических концепций на основе полученных результатов (от частного к общему). Метод дедукции, наоборот, предполагает исследование от общих принципов, законов, когда положения теории распределяются на отдельные явления.

Следует отметить, что индукция, в смысле метода, не имеет сколько-нибудь прямого отношения к индуктивности, просто они имеют общий латинский корень inductio — наведение, побуждение — и обозначают совершенно разные понятия.

Лишь малая часть опрашиваемых из числа носителей точных наук — профессиональных физиков, инженеров-электротехников, радиоинженеров и студентов этих направлений — смогут дать внятный ответ на этот вопрос, а некоторые из них готовы прочитать с ходу целую лекцию на эту тему.

Определение индуктивности

В физике индуктивность, или коэффициент самоиндукции, определяется как коэффициент пропорциональности L между магнитным потоком Ф вокруг проводника с током и порождающим его током I или — в более строгой формулировке — это коэффициент пропорциональности между электрическим током, текущим в каком-либо замкнутом контуре, и магнитным потоком, создаваемым этим током:

или

Для понимания физической роли катушки индуктивности в электрических цепях можно использовать аналогию формулы энергии, запасаемой в ней при протекании тока I, с формулой механической кинетической энергии тела.

При заданной силе тока I индуктивность L определяет энергию магнитного поля W, создаваемого этим током I:

Аналогично, механическая кинетическая энергия тела определяется массой тела m и его скоростью V:

То есть индуктивность, подобно массе, не позволяет энергии магнитного поля мгновенно увеличиться, равно как и масса не позволяет проделать такое с кинетической энергией тела.

Проведём исследование поведения тока в индуктивности:

Рис. 2. Физическая реализация эксперимента

Рис. 3. Осциллограмма тока через индуктивность. Желтая осциллограмма — выход сигнал-генератора, голубая — сигнал на резисторе.

Из-за инерционности индуктивности происходит затягивание фронтов входного напряжения. Такая цепь в автоматике и радиотехнике называется интегрирующей, и применяется для выполнения математической операции интегрирования.

Проведём исследование напряжения на катушке индуктивности:

Рис. 6. Осциллограмма напряжения на индуктивности (голубая)

В моменты подачи и снятия напряжения из-за присущей катушкам индуктивности ЭДС самоиндукции, возникают выбросы напряжения. Такая цепь в автоматике и радиотехнике называется дифференцирующей, и применяется в автоматике для корректировки процессов в управляемом объекте, носящих быстрый характер.

Рис. 5. По большому счёту, во всех генераторах электрического тока любого типа, равно как и в электродвигателях, их обмотки представляют собой катушки индуктивности.

Примеры измерений

DC 200 mV
15 Вольт

Результаты измерений индуктивности 100 мкГ

Первый диапазон

Второй диапазон

Третий диапазон

С помощью программы LIMP

Недостатки схемы:
нужны дополнительно мультиметр и внешний блок питания, несколько сложная и непонятная калибровка (особенно, когда нечем калибровать), невысокая точность измерений, маловат верхний предел.

Я считаю, что этот простой измеритель индуктивности может быть полезен начинающим радиолюбителям, а также тем, у кого не хватает средств на покупку дорогостоящего прибора.

Применение данного измерителя оправдано в тех случаях, когда к точности измерений абсолютных значений индуктивности не предъявляется строгих требований.

Измеритель может, например, пригодиться для контроля индуктивности обмоток при намотке дросселей сетевых фильтров, подавляющих синфазные помехи. При этом важна идентичность двух обмоток дросселя, чтобы не допустить насыщение сердечника.

Источники

1. Статья. В помощь радиолюбителю. Выпуск 10. Информационный обзор для радиолюбителей / Сост. М.В. Адаменко. — М.: НТ Пресс, 2006. — С. 8.

Индуктивное сопротивление – как его найти

Реальная катушка имеет не только реактивное, но и обычное сопротивление. Индуктивное сопротивление определяется по формуле:

XL=2*П*v*L

Здесь употреблены следующие обозначения:

  1. XL – рассматриваемая величина.
  2. Символом «П» обозначено число Пи.
  3. V представляет собой частоту.
  4. L — это обозначение величины индуктивности.

Надо отметить, что величина (2*П*v) представляют собой круговую частоту, которую обозначают греческим символом «омега».

Катушки с различными сердечниками

Рассматриваемая величина подчиняется закону Ома. Формула выглядит так:

I = U / XL

I, U представляют собой ток и напряжение, XL – это индуктивное сопротивление.

Конфигурация магнитного поля катушки

Для определения искомой величины можно воспользоваться приведенными формулами. При этом можно воспользоваться амперметром и вольтметром. Первый из них надо включить последовательно, второй — параллельно.

При этом необходимо учитывать следующее. На самом деле, в цепи, в которую включена индуктивность, действует два вида сопротивления: активное и реактивное. Измерив ток и напряжение, можно определить их результирующую величину. Нужно помнить, что она не является их простой суммой.

Дело в том, что в переменной цепи, где имеется только катушка и нет конденсатора, напряжение находится впереди тока на четверть периода колебания. Эта величина равна 90 градусам.

Полное сопротивление определяется следующим образом. Для этого необходимо нарисовать соответствующую диаграмму. Если по горизонтали отложить величину обычного, а по вертикали — реактивного, а затем по этим векторам построить прямоугольник, то длина его диагонали будет равна полному значению.

Магнитное поле провода

К примеру, если подобрать элементы цепи таким образом, чтобы по абсолютной величине обе этих величины были равны, то искомая часть определится как их полное значение, умноженное на квадратный корень из двух.

Для того, чтобы получить информацию о зависимости индуктивного сопротивления от частоты, возможно воспользоваться осциллографом.

При использовании переменного тока необходимо учитывать не только обычное, но и индуктивное сопротивление. Оно возникает в том случае, если в электрической цепи присутствует катушка.

Приставка наноамперметр к мультиметру

В этом устройстве использовался усилитель TS1001. Особенность, которая отличает микросхему TS1001, заключается в чрезвычайно низком энергопотреблении, схема работает нормально даже при напряжении 0,8 В и потребляет ток 0,8 мкА. Следовательно будет отлично работать в аккумуляторных устройствах, а энергопотребление её настолько мало, что даже не требуется пользоваться кнопкой подачи питания. Применяя разное значения резистора, разрешения варьируются от 1 мА / В до 1 мкА / В в четырех поддиапазонах. Используя любой популярный мультиметр можно измерить ток в диапазоне наноампер. Входной ток смещения усилителя TS1001 составляет 25 пА, поэтому самый низкий диапазон был специально выбран 1 мкА / В. Подробнее здесь…

Измерение индуктивности и емкости с помощью мультиметра и компьютера

Сегодня на рынке много сравнительно дешевых цифровых мультиметров измеряющих сопротивления в широких пределах и емкости конденсаторов до 20 мкФ и более. Однако приборы, измеряющие индуктивности сравнительно дороги, да и нужны они не каждый день.

Электрику-ремонтнику довольно частот приходится измерять индуктивность катушек реле, обмоток трансформаторов и т. п. для определения их исправности. При этом самостоятельное изготовление прибора или приставки для измерения индуктивности затрудняется том, что для него требуется источника питания и частотомер для настройки генератора. Надо отметить, что в таких приборах (приставках) предлагаемых в различных источниках стабильность частоты и амплитуды генератора не высока. Отсюда и точность измерений также не высока.

Предлагается предельно простой прибор на базе компьютера и цифрового вольтметра позволяющий измерять индуктивности от 10 мкГн до 1 Гн и емкости от 10 пФ до 1 мкФ с достаточно высокой точностью, которая определяется точностью вольтметра.

Как известно, импеданс индуктивности описывается формулой:

Перепишем формулу следующим образом:

ZL = kL где k = 2πf — коэффициент пропорцио­нальности.

Для упрощения процесса измерения, рассчитаем f таким образом чтобы k равнялся ровно 100000:

f = к/2π = 100000/6,2831853 = 15915,4943 Гц.

Как видим, для k = 10000 необходима частота 1591,5 Гц, а для k = 1000 — 159,15 Гц.

Принцип работы измерителя индуктивностей показан на рис.1, а на рис.2 — измерителя емкости. В обоих случаях компьютер (точнее его зву­ковая карта) выступает в качестве генератора высокостабильного по частоте и напряжению тестового сигнала, а мультиметр — в качестве вольтметра переменного тока.

Если сопротивление источника сигнала превышает сопротивление нагрузки в 10 раз и более можно считать что данный источник сигнала является источником тока. Для выполнения этого условия, комплексное сопротивление измеряемой индуктивности не должно превышать 1/10 резистора R1.

Выходное напряжение генератора должно быть равно 1 В (действующее значение), при этом напряжение на измеряемой индуктивности не должно превышать 100 мВ.

Милливольтметр U2 используется на пределе 100 мВ. В качестве источника сигнала используется звуковая карта компьютера (ноутбука). При этом, в качестве тестовых сигналов используются wav-файлы записанные с помощью аудиоредактора (например, GoldWav) с уровнем 0 дБ. Выходное напряжение звуковой карты как правило несколько больше 1 В. Требуемое напряжение выставляют регулятором громкости. Если оно все же меньше 1 В (что может быть в некоторых ноутбуках), то придется использовать поправочный коэффициент, что вносит некоторые неудобства при измерениях. Предположим выходное напряжение звуковой карты равно 0,91 В. В этом случае поправочный коэффициент равен k = 1/0,91 = 1,1.

Упрощенный вариант прибора показан на рис.З, на котором включенный как вольтметр цифровой мультиметр с автоматическим переключением диапазонов показан как стрелочный прибор.

Пределы измерения с помощью этого прибора сведены в таблицу.

Для оперативного переключения резисторов можно использовать переключатель на 3 положения. Пределы измерения можно расширить если дополнительно использовать резисторы 100 кОм и 1 МОм.

При показаниях вольтметра меньше 10 мВ и больше 100 мВ для повышения точности измерений следует перейти на другой диапазон. Это может быть сделано двумя способами: изменением частоты и переключением номинала резистора.

Если при измерении индуктивности напряжение на проверяемой индуктивности больше 100 мВ, то необходимо увеличить резистор или снизить частоту сигнала и наоборот при напряжении менее 10 мВ.

Если при измерении емкости показания прибора больше 100 мВ, то необходимо уменьшить резистор или повысить частоту и наоборот при напряжении менее 10 мВ.

Частота тест сигнала, Гц Диапазон измерения индуктивностей и емкостей при сопротивлении резистора R1
100 10к
15915 10…100 мкГн 0,1…1 мГн 1…10 мГн
1…10 нф 100…1000 пф 10…100 пф
1591,5 0,1…1 мГн 1…10 мГн 10…100 мГн
10…100 нФ 1…10 нф 10…1000пФ
159,15 1…10 мГн 10…100 мГн 0,1…1 Гн
0,1…1 мкФ 10…100 нф 1…10 нф

Конструкция упрощенного измерителя

Для его изготовления понадобится кабель с разъемом minijack, например, от вышедших из строя телефонов плеера. Если требуется измеритель индуктивности в пределах 0,1… 100 мГн то можно обойтись всего одним резистором 1 кОм и тремя файлами указанных выше сигналов.

На рис.4 показан такой измеритель с двумя резисторами типа СМД номиналами 1 кОм и 10 кОм, при этом пределы измерения расширяются на порядок.

Источник

Рис. 2.41. К вопросу нахождения тангенса угла α

При переходе к частоте, не равной 50 Гц, в формулы (32) ~ (35) вводят вместо коэффициента
0,00318
множитель
1/2π
f
источника
питания схемы, где f

частота источника питания схемы.

Практически каждый, кто увлекается электроникой, будь то начинающий, или опытный радиолюбитель, просто обязан иметь в своём арсенале приборы для измерений. Наиболее часто приходится измерять, конечно же, напряжение, ток и сопротивление. Чуть реже, в зависимости от специфики работы, — параметры транзисторов, частоту, температуру, ёмкость, индуктивность.

Сейчас в продаже имеется множество недорогих универсальных цифровых измерительных приборов, так называемых мультиметров. С их помощью можно измерять практически все вышеназванные величины. За исключением, пожалуй, индуктивности, которая очень редко встречается в составе комбинированных приборов. В основном, измеритель индуктивности — это отдельный прибор, также его можно встретить совместно с измерителем ёмкости (LC — метр).

Обычно, измерять индуктивность приходится нечасто. В отношении себя я бы даже сказал — очень редко. Выпаял, например, с какой-нибудь платы катушку, а она без маркировки. Интересно же узнать, какая у неё индуктивность, чтобы потом где-нибудь применить.

Или сам намотал катушку, а проверить нечем. Для таких эпизодических измерений я посчитал нерациональным приобретение отдельного прибора. И вот я начал искать какую-нибудь очень простую схему измерителя индуктивности

Особых требований по точности я не предъявлял, — для любительских самоделок это не столь важно

В качестве средства измерения и индикации в схеме, описанной в статье, применяется цифровой вольтметр с чувствительностью 200 мВ
, который продаётся в виде готового модуля. Я же решил использовать для этой цели обычный цифровой мультиметр UNI-T M838
на пределе измерения 200 мВ
постоянного напряжения. Соответственно, схема упрощается, и в итоге приобретает вид приставки к мультиметру.

Исключён фрагмент. Наш журнал существует на пожертвования читателей. Полный вариант этой статьи доступен только

Я не буду повторять описание работы схемы, всё вы можете прочитать в оригинальной статье (архив внизу). Скажу только немного о калибровке.

Применение катушек в технике

Явление электромагнитной индукции известно уже давно и широко применяется в технике. Примеры использования:

  • сглаживание пульсаций и помех, накопление энергии;
  • создание магнитных полей в различных устройствах;
  • фильтры цепей обратной связи;
  • создание колебательных контуров;
  • трансформаторы (устройство из двух катушек, связанных индуктивно);
  • силовая электротехника использует для ограничения тока при к. з. на ЛЭП (катушки индуктивности, называются реакторами);
  • ограничение тока в сварочных аппаратах — катушки индуктивности делают его работу стабильнее, уменьшая дугу, что позволяет получить ровный сварочный шов, имеющий наибольшую прочность;
  • применение катушек в качестве электромагнитов различных исполнительных механизмов;
  • обмотки электромагнитных реле;
  • индукционные печи;
  • установление качества железных руд, исследование горных пород при помощи определения магнитной проницаемости минералов.

2.32. Измерение индуктивностей низкочастотных катушек

2) устанавливают с помощью автотрансформатора АТ напряжение на уровне 10 В и замечают показание U1 вольтметра, то есть падение напряжения на исследуемой катушке;

3) переводят ползунок переключателя из положения 1—3 в положение 1—2, присоединяя таким образом вольтметр параллельно резистору, и подбирают такое значение сопротивленияR = R2,при котором падение напряжения на резисторе также равноU1.

4) вычисляют индуктивность катушки по формуле:

L’x = 0,00318 √RR2 Гн, (32)

где R1 иR2 — сопротивления резистора (Ом) при нахождении ползунка переключателя в положениях 1—3 и 1—2.

При отсутствии переменного резистора индуктивность катушки измеряют с помощью постоянного резистора. Схема и процесс измерения остаются прежними, формула же для подсчета Lх — дополняется множителем U1/U2,то есть приобретает вид:

L”x = 0,00318 R(U1/U2) Гн, (33)

где R — сопротивление резистора, Ом,

U1 иU2 — показания вольтметра в положениях 1—3 и 1—2 ползунка переключателя.

В большинстве случаев индуктивные сопротивления обмоток намного превышают их активные сопротивления, поэтому приведенные выше формулы дают достаточно точные значения индуктивности.

Однако если число витков катушки мало, а сопротивление постоянному (или переменному) току велико (несколько десятков или сотен Ом), то L’x и L”x вычисляют по другим, более точным формулам, а именно:

 (34)

где R — сопротивление резистора при нахождении ползунка переключателя в положении 1—2; U — напряжение на последовательно соединенных R и Lx; U2— напряжение на резисторе равное напряжению U1на катушке Lх;

Lx” =  0,00318 R0 / tg α,

где R — активное сопротивление обмотки;

α — угол, образованный стороной ВС треугольника ABC (рис. 2.40) и перпендикуляром, опущенным из точки В на продолжение стороны ЛС.

Как проверить дроссель люминесцентного светильника?

Дроссель представляет собой катушку индуктивности, намотанную на ферромагнитном сердечнике с большой величиной магнитной проницаемости. Он является составной частью электромагнитной пускораспределительной аппаратуры (ЭмПРА). На этапе включения ЛДС он вместе со стартером обеспечивает разогрев катодов и затем создает высоковольтный импульс (до 1000 В) для создания тлеющего разряда в колбе за счет, свойственной ему электродвижущей силы (ЭДС) самоиндукции.

Будет интересно Как сделать зарядное устройство для аккумулятора автомобиля своими руками

После выключения из работы стартера дроссель использует свое индуктивное сопротивление для поддержки тока разряда через ЛДС на уровне, необходимым для постоянной и стабильной ионизации газово-ртутной смеси, используемой в колбе. Величина индуктивности такова, что сопротивление дросселя для переменного тока защищает спирали электродов от перегрева и перегорания.

Проверить исправность дросселя люминесцентной лампы можно путём измерения сопротивления с помощью омметра. Он входит в состав комбинированного прибора электрика.

Если проверить дроссель лампы дневного света мультиметром, можно обнаружить либо его исправное состояние, при котором измеренное активное сопротивление соответствует его паспортным данным, либо столкнуться с несоответствиями. Проанализировав их, можно сделать вывод о характере обнаруженного дефекта. Замыкания сопровождаются неприятным запахом и изменением цвета защитной изоляции. При любом внешнем проявлении или обнаруженном отклонении величины измеренного сопротивления от номинального его значения дроссель необходимо заменить.


Проверка дросселя люминесцентного светильника.

Устройство катушки

Более близким к идеализированному элементу — индуктивности — является реальный элемент электронной цепи — индуктивная катушка. В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электронного поля и преобразование электронной энергии в другие виды энергии, а именно в термическую. Количественно способность реального и идеализированного частей электронной цепи припасать энергию магнитного поля характеризуется параметром, именуемым индуктивностью.

Таким макаром термин «индуктивность» применяется как заглавие идеализированного элемента электронной цепи, как заглавие параметра, количественно характеризующего характеристики этого элемента, и как заглавие основного параметра индуктивной катушки.

Связь меж напряжением и током в индуктивной катушке определяется законом электрической индукции, из которого следует, что при изменении магнитного потока, пронизывающего индуктивную катушку, в ней наводится электродвижущая сила е, пропорциональная скорости конфигурации потокосцепления катушки ψ и направленная таким макаром, чтоб вызываемый ею ток стремился воспрепятствовать изменению магнитного потока:

e = — dψ / dt

В системе единиц СИ магнитный поток и потокосцепление выражают в веберах (Вб).

Интересно почитать: инструкция как прозвонить транзистор.

Магнитный поток Ф, пронизывающий любой из витков катушки, в общем случае может содержать две составляющие: магнитный поток самоиндукции Фси и магнитный поток наружных полей Фвп: Ф — Фси + Фвп.

1-ая составляющая представляет собой магнитный поток, вызванный протекающим по катушке током, 2-ая — определяется магнитными полями, существование которых не связано с током катушки — магнитным полем Земли, магнитными полями других катушек и неизменных магнитов. Если 2-ая составляющая магнитного потока вызвана магнитным полем другой катушки, то ее именуют магнитным потоком взаимоиндукции.

Потокосцепление катушки ψ, так же как и магнитный поток Ф, может быть представлено в виде суммы 2-ух составляющих: потокосцепления самоиндукции ψси, и потокосцепления наружных полей ψвп

ψ= ψси + ψвп

Наведенная в индуктивной катушке ЭДС е, в свою очередь, может быть представлена в виде суммы ЭДС самоиндукции, которая вызвана конфигурацией магнитного потока самоиндукции, и ЭДС, вызванной конфигурацией магнитного потока наружных по отношению к катушке полей:

e = eси + eвп,

тут еси — ЭДС самоиндукции, евп — ЭДС наружных полей.

Если магнитные потоки наружных по отношению к индуктивной катушке полей равны нулю и катушку пронизывает только поток самоиндукции, то в катушке наводится только ЭДС самоиндукции.

Связанные материалы

Измерение индуктивности трансформатора или дросселя… Часто самодельщики-ламповики озадачены определением индуктивности обмотки(ок)… LIMP Arta Software — программный измеритель RCL… Продолжу описание программы LIMP из пакета фирмы Arta Software. С ее помощью можно определять…

Coil32 v9.0 — программа для расчета катушек индуктивности… Всем, кто занимался изготовлением (и ремонтом) приемников, передатчиков, акустических систем, ИБП,…

ESR (ЭПС) измеритель — приставка к цифровому мультиметру… Статья о приборе для измерения ESR (ЭПС) конденсаторов появилась в журнале «Радио» №8 за 2011 год….


Измерения переменного напряжения звуковой частоты мультиметрами М-832… Вряд ли будет преувеличением сказать, что тестер семейства М-83х есть у каждого радиолюбителя….

Оживление акустики S-30… Главное достоинство S-30 — очень правильный тональный баланс (ИМХО). Переделывались 4-омные…

Маркировка электронных компонентов. А.В.Перебаскин… Маркировка электронных компонентов. — 9-е изд., стер. — М. Издательский дом «Додэка-ХХI», 2004. —…

Определитель насыщения сердечников из феррита или как сделать дроссель для импульсного источника питания… «Делай с нами, делай как мы, делай лучше нас!» Предлагаю вашему вниманию простой прибор, который…

«V6» — измеритель RMS-значений напряжения, тока, активной и полной мощности (Atmega 8)… Весьма часто возникает необходимость знать величину потребляемой (активной) мощности различными…

Какое строение имеют источники светового потока

Дневное освещение является самым экономичным вариантом в плане освещения. При этом оно лучше всего подходит для глаз, благодаря чему служит отличной альтернативой всем существующим на сегодняшний день вариантам подсветки помещений. Для создания дневного света сегодня используются различие виды люминесцентных ламп. Такие лампы могут классифицироваться по оттенку и яркости излучаемого света:

  • теплый белый;
  • холодный белый;
  • желтоватый тон.


Схема дросселя.

Дроссель

Но для повышения их безопасности во время работы принято использовать специальный прибор – дроссель. Им оснащены все лампы дневного света. Покупая светильник дневного света, обязательно поинтересуйтесь у продавца гарантией и другой сопроводительной документацией на приобретаемое изделие. Так вы точно купите качественный прибор для своих нужд. Что же представляет собой дроссель? Внешне дроссель имеет вид катушки индуктивности, у которой имеется специальный ферримагнитный сердечник. Это такая деталь, которая необходима для стабильной работы любой лампы при создании дневного света. По сути, дроссель входит в состав энергосберегающего источника света, установленного в светильнике. Частые поломки и способы их проверки мультимером указаны в таблице ниже:


Таблица основных поломок дросселя и способы их проверки мультимером.

При его неисправности или падении работоспособности на концах лампы появляются почернения. В задачи данной детали входит контроль напряжения, создаваемого на выходных контактах энергосберегающего источника света. Очень часто дроссель входит в состав люминесцентных ламп. Для того чтобы источник дневного света не погас, создается балласт. Он способен поддерживать в контактах осветительного прибора ток на требуемом уровне.

По существующим на сегодняшний день стандартам, такой балласт нужно подключать последовательно. Затем к нему параллельно подсоединяют стартер. Он ответственен за зажигание лампы.

Такое строение и способ подключения играет важную роль в работоспособности лампы, используемой для создания дневного света в помещении. Поэтому если имеются неисправности, то в первую очередь нужно проверить дроссель. О том, как это сделать мы расскажем несколько ниже. Чтобы понять, почему лампы дневного света перестали работать, необходимо быть знакомым с их конструкцией, а также принципом работы. Это нужно для того, чтобы по косвенным признакам проверить их работоспособность и определиться с вариантами починки. На данный момент в продаже существует несколько типов люминесцентных ламп. Но все они имеют одинаковое строение.


Тороидальный дроссель.

Цифровой мультиметр

В отличие от аналоговых, этот мультиметр позволяет с легкостью определять интересуемые величины, при этом его точность измерений гораздо выше по сравнению со стрелочными аппаратами.

Также наличие переключателя между различными характеристиками электричества исключает возможность перепутать то или иное значение, поскольку пользователю не нужно разбираться в градации шкалы показаний.

Результаты измерений отображаются на дисплее (в более ранних моделях – светодиодных, а в современных – жидкокристаллических). За счет этого цифровой мультиметр комфортен для профессионалов и прост и понятен в использовании для новичков.

Разновидности

Сначала пару слов о разновидностях приборов. Раньше чаще всего использовался аналоговый мультиметр, в котором установлены обычные стрелочки для отображения показаний. Сегодня более востребованы электронные модели, но и аналоговые не спешат уходить в прошлое, ими пользуются преимущественно профессионалы.

Причины этого кроются в следующем. Стрелочные более стабильно работают в зонах электромагнитных полей. Кроме того, электронные модели требуют питания (чаще всего батарейки), а износ элементов питания может напрямую сказаться на погрешности измерений. Стоит также отметить и возможность выхода из строя из-за сильных электростатических разрядов. Аналоговый мультиметр показывает более точный результат.

Рейтинг
( 1 оценка, среднее 3 из 5 )
Понравилась статья? Поделиться с друзьями:
Вековой опыт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: