Десятичные дроби

Тренажер по таблице умножения и деления

Бесценный богатый тренажер!
В книге вы найдете:

  •  страницы интересных результативных упражнений;
  • разнообразные задания;
  • творческий подход;
  • нестандартные приемы;
  • задания разного уровня сложности;
  • различные шифровки;
  • игры и раскраски.
  • Ваш ребенок получит:

легкое и без нервов запоминание таблицы умножения;
развитие внимания и мышления;
улучшение в целом математических способностей;
огромное количество интересных и полезных заданий.
Книга может быть использована как для индивидуальной работы, так и работы в классе.
Скучно точно не будет!

Тренажер удобен для распечатывания!

Виды дробей

Дробь — это число, в состав которого входит одна доля или несколько её частей, поделенных на равные части. По сути, это отношение двух значений. Обыкновенное дробное выражение записывают с помощью натуральных чисел, разделённых горизонтальной чертой. Называется она винкулумом. В литературе можно встретить и другой тип записи с наклонной чертой (солидус).

Верхнее число, или стоящее слева от черты, называют числителем или делимым, а нижнее — знаменателем (делителем). Что такое дробь, удобнее всего объяснить на примере. Пусть на столе стоит тарелка, на которой лежит пирог. Он один и целый. Можно взять нож и разделить его на шесть равных частей.

По сути, количество пирога не изменится, поэтому, с математической точки зрения, на тарелке будет всё так же находиться целый пирог. Если с неё взять два куска, то целостность нарушится. Записывают это действие с помощью дроби: 2/6. То есть внизу указывают число, обозначающее, на сколько поделили пирог, а сверху — сколько кусков забрали.

Дробь — это число, обозначающее часть целого предмета. При этом дробное отношение всегда будет меньше единицы. Существующие отношения принято разделять на следующие виды:

  1. Правильные — отношения, в которых числитель меньше знаменателя.
  2. Неправильные — дроби, где делимое по величине превышает делитель.
  3. Смешанные — состоящие из суммы натурального и дробного числа.
  4. Десятичные — в знаменателе которых стоит натуральное число с размерностью кратной десяти.
  5. Составные — состоящие из нескольких черт дроби.

С дробными отношениями можно выполнять любые математические действия. Их складывают, вычитают, умножают, возводят в степень. Замечательным свойством дробей есть возможность их преобразования из одного вида в другой. Например, можно перевести обычную дробь в десятичную, неправильную — в смешанную. При этом операции возможны как в одну, так и другую сторону.

Проводимые операции, кроме получения периодической дроби, можно выполнять и в обратную сторону. Остаток при делении должен всегда быть меньше делителя. Поэтому, если при действии получается ноль, деление прекращается, а если остаток — бесконечная периодическое отношение.

Чаще всего для того, чтобы преобразовать простую дробь в десятичную, необходимо выполнить три шага:

  1. Сократить выражение, требующее преобразования.
  2. Разделить удобным способом числитель на знаменатель. В зависимости от величины значений, стоящих в числителе и знаменателе, это можно сделать столбиком или в уме. Если при делении остаток выходит отличным от нуля, то поставить запятую и продолжить искать частное.
  3. Записать найденный результат с использованием запятой.

Нужно отметить, что алгоритм, объясняющий правило того, как перевести обыкновенную дробь в десятичную, подходит лишь для случаев, когда знаменатель раскладывается на множители пять и два. В иных случая получится периодическое десятичное число.

Как читать десятичную дробь

Чтобы учитель вас правильно понял, важно читать десятичные дроби грамотно. Сначала произносим целую часть с добавлением слова «целых», а потом дробную с обозначением разряда — он зависит от количества цифр после запятой:

Сколько цифр после запятой? Читается, как
одна цифра — десятых; 1,3 — одна целая, три десятых;
две цифры — сотых 2,22 — две целых, двадцать две сотых;
три цифры — тысячных; 23,885 — двадцать три целых, восемьсот восемьдесят пять тысячных;
четыре цифры — десятитысячных; 0,5712 — ноль целых пять тысяч семьсот двенадцать десятитысячных;
и т.д.

Сохраняй наглядную картинку, чтобы быстрее запомнить.

Перевод десятичных дробей в обыкновенные дроби

Теперь пришло время рассмотреть обратный процесс перевода десятичной дроби в обыкновенную. Сформулируем правило перевода, которое включает три этапа. Как перевести десятичную дробь в обыкновенную?

Правило перевода десятичных дробей в обыкновенные дроби

  1. В числитель записываем число из исходной десятичной дроби, отбросив запятую и все нули слева, если они есть.
  2. В знаменатель записываем единицу и за ней столько нулей, сколько цифр есть в исходной десятичной дроби после запятой.
  3. При необходимости сокращаем полученную обыкновенную дробь. 

Рассмотрим применение данного правила на примерах.

Пример 8. Перевод десятичных дробей в обыкновенные

Представим число 3,025 в виде обыкновенной дроби.

  1. В числитель записываем саму десятичную дробь, отбросив запятую: 3025.
  2. В знаменателе пишем единицу, а после нее три нуля — именно столько цифр содержится в исходной дроби после запятой: 30251000.
  3. Полученную дробь 30251000 можно сократить на 25, в результате чего мы получим: 30251000=12140.

Пример 9. Перевод десятичных дробей в обыкновенные

Переведем дробь ,0017 из десятичных в обыкновенные.

  1. В числителе запишем дробь ,0017, отбросив запятую и нули слева. Получится 17.
  2. В знаменатель записываем единицу, а после нее пишем четыре нуля: 1710000. Данная дробь несократима.

Если в десятичной дроби есть целая часть, то такую дробь можно сразу перевести в смешанное число. Как это сделать?

Сформулируем еще одно правило.

Правило перевода десятичных дробей в смешанные числа.

  1. Число, стоящее в дроби до запятой, записываем как целая часть смешанного числа.
  2. В числителе  записываем число, стоящее в дроби после запятой, отбросив нули слева, если они есть.
  3. В знаменателе дробной части дописываем единицу и столько нулей, сколько цифр есть в дробной части после запятой.

Обратимся к примеру

Пример 10. Перевод десятичной дроби в смешанное число

Представим дробь 155,06005 в виде смешанного числа.

  1. Записываем число 155, как целую часть.
  2. В числителе записываем цифры после запятой, отбросив нуль. 
  3. В знаменателе записываем единицу и пять нулей

Поучаем смешанное число: 1556005100000

Дробную часть можно сократить на 5. Сокращаем, и получаем финальный результат:

155,06005=155120120000

Перевод бесконечных периодических десятичных дробей в обыкновенные дроби

Разберем на примерах, как осуществлять перевод периодических десятичных дробей в обыкновенные. Прежде чем начать, уточним: любую периодическую десятичную дробь можно перевести в обыкновенную.

Самый простой случай — период дроби равен нулю. Периодическая дробь с нулевым периодом заменяется на конечную десятичную дробь, а процесс обращения такой дроби сводится к обращению конечной десятичной дроби.

Пример 11. Перевод периодической десятичной дроби в обыкновенную

Обратим периодическую дробь 3,75().

Отбросив нули справа, получим конечную десятичную дробь 3,75.

Обращая данную дробь в обыкновенную по алгоритму, разобранному в предыдущих пунктах, получаем:

3,75()=3,75=375100=154.

Как быть, если период дроби отличен от нуля? Периодическую часть следует рассматривать как сумму членов геометрический прогрессии, которая убывает. Поясним это на примере:

,(74)=,74+,0074+,000074+,00000074+..

Для суммы членов бесконечной убывающей геометрической прогрессии существует формула. Если первый член прогрессии равен b, а знаменатель q таков, что <q<1, то сумма равна b1-q.

Рассмотрим несколько примеров с применением данной формулы.

Пример 12. Перевод периодической десятичной дроби в обыкновенную

Пусть у нас есть периодическая дробь ,(8) и нам нужно перевести ее в обыкновенную.

Запишем:

,(8)=,8+,08+,008+..

Здесь мы имеем бесконечную убывающую геометрическую прогрессию с первым членом ,8 и знаменателем ,1.

Применим формулу:

,(8)=,8+,08+,008+..=,81-,1=,8,9=89

Это и есть искомая обыкновенная дробь.

Для закрепления материала рассмотрим еще один пример.

Пример 13. Перевод периодической десятичной дроби в обыкновенную

Обратим дробь ,43(18).

Сначала записываем дробь в виде бесконечной суммы:

,43(18)=,43+(,0018+,000018+,00000018..)

Рассмотрим слагаемые в скобках. Эту геометрическую прогрессию можно представить в следующем виде:

,0018+,000018+,00000018..=,00181-,01=,0018,99=189900.

Полученное прибавляем к конечной дроби ,43=43100 и получаем результат:

,43(18)=43100+189900

После сложения данных дробей и сокращения получим окончательный ответ:

,43(18)=1944

В завершение данной статьи скажем, что непериодические бесконечный десятичные дроби нельзя перевести в вид обыкновенных дробей.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Распространенные ошибки и на что следует обратить внимание. Тренажер

Давайте возьмем пример, сложив вместе ¾ и ⅙.

Первое, что нужно сделать, это получить одинаковые знаменатели, поэтому мы умножаем их, чтобы получить 24.

Мы умножили знаменатель 4 на 6, чтобы получить 24, поэтому мы также умножаем числитель на 6, чтобы получить 18/24.

Мы умножили знаменатель 6 на 4, чтобы получить 24, поэтому мы также умножаем числитель на 4, чтобы получить 4/24.

Теперь мы можем просто добавить 18/24 к 4/24, чтобы получить 22/24, что упрощается до 11/12.

Другие распространенные ошибки включают:

Оставляйте знаменатель неизменным во время вопросов, касающихся умножения или сложения.

Что такое дробь

Дробью называется число, которое состоит из нескольких долей единицы.

Если говорить простым языком, есть у вас торт. Он один, он является одним целым. Но вот вы отрезали от него половину. Это его доля. Всего один целый торт сейчас состоит из двух частей. Одну вы съели (очень уж вкусный был). То есть получается, что вы съели одну часть из двух, на которые вы его разделили. Значит, вы съели ½ торта. В подобном виде можно представить любую вещь, разделив ее на части.

Для того чтобы овладеть умением умножения числа на дробь, не нужно много мудрости или знаний. Достаточно уметь перемножать целые числа. Это довольно похожие понятия и имеют одинаковый смысл.

Умножение целых чисел можно представить в виде сложения равных слагаемых. То есть: 5*2 = 5+5= 10. В принципе, умножать дробь на число — почти такое же занятие. Мы просто находим сумму этих самых слагаемых, которые, кстати, являются одинаковыми.

Как вы могли заметить, подразумевающийся смысл у обоих действий один и тот же — сложение слагаемых.

Теперь же мы можем подняться на новую ступень и попробуем перемножить целое и дробь. Наши примеры будут выглядеть так: 5 • 2/4. Однако прежнее определение для умножения чисел не подходит для этого случая, потому что вы не сможете заменить такое умножение сложением.

Поэтому давайте дадим новое определение для умножения, как же нам теперь нужно понимать это действие.

Понятие десятичной дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это запись числа в математика, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

В обыкновенной дроби над чертой принято писать делимое, которое становится числителем, а под чертой всегда находится делитель, который называют знаменателем. Черта между числителем и знаменателем означает деление.

Вернемся к обыкновенным дробям позже, а сейчас обсудим десятичные дроби. Их знаменатель всегда равен 10, 100, 1000, 10000 и т.д. По сути, десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:

  • 0,8
  • 7,42
  • 9,932

Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.

Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.

Перевод смешанных чисел в десятичные дроби

Когда мы записываем смешанные числа без знаменателя, мы тем самым перевóдим их в десятичные дроби. При переводе обыкновенных дробей в десятичные дроби нужно знать несколько моментов, о которых мы сейчас поговорим.

После того как записана целая часть, обязательно нужно посчитать количество нулей в знаменателе дробной части, поскольку количество нулей дробной части и количество цифр после запятой в десятичной дроби должно быть одинаковым. Что это значит? Рассмотрим следующий пример: перевести смешанное число в десятичную дробь.

Сначала записываем целую часть и ставим запятую:

3,

И можно бы сразу записать числитель дробной части и десятичная дробь готова, но обязательно нужно посчитать сколько нулей содержится в знаменателе дробной части.

Итак, посчитаем количество нулей в дробной части смешанного числа .  Видим, что в знаменателе дробной части один ноль. Значит в десятичной дроби после запятой будет одна цифра и это цифра будет числитель дробной части смешанного числа , то есть число 2

3,2

Таким образом, смешанное число при переводе в десятичную дробь обращается в 3,2. Эта десятичная дробь читается так:

«Три целых, две десятых»

«Десятых» потому что в дробной части смешанного числа содержится число 10.

Пример 2. Перевести смешанное число в десятичную дробь.

Записываем цéлую часть и ставим запятую:

5,

И можно бы сразу записать числитель дробной части и получить десятичную дробь 5,3 но правило говорит, что после запятой должно быть столько цифр сколько нулей в знаменателе дробной части смешанного числа . А мы видим, что в знаменателе дробной части   два нуля. Значит в нашей десятичной дроби после запятой должно быть две цифры, а не одна.

В таких случаях числитель дробной части нужно немного видоизменить: добавить ноль перед числителем, то есть перед числом 3

Теперь можно довести дело до конца. Записываем после запятой числитель дробной части:

5,03

Видим, что количество цифр после запятой и количество нулей в знаменателе дробной части смешанного числа   одинаково.

Десятичная дробь 5,03 читается так:

«Пять целых, три сотых»

«Сотых» потому что в знаменателе дробной части смешанного числа содержится число 100.

Пример 3. Перевести смешанное число в десятичную дробь.

Из предыдущих примеров мы узнали, что для успешного перевода смешанного числа в десятичную дробь, количество цифр в числителе дробной части и количество нулей в  знаменателе дробной части должно быть одинаковым.

Перед переводом смешанного числа в десятичную дробь, его дробную часть нужно немного видоизменить, а именно сделать так, чтобы количество цифр в числителе дробной части и количество нулей в знаменателе дробной части было одинаковым.

В первую очередь смóтрим на количество нулей в знаменателе дробной части. Видим, что там три нуля:

Наша задача организовать в числителе дробной части три цифры. Одна цифра у нас уже есть — это цифра 2. Осталось добавить ещё две цифры. Ими будут два нуля. Добавим их перед цифрой 2. В результате количество нулей в знаменателе и количество цифр в числителе станет одинаковым:

Теперь можно заняться переводом этого смешанного числа в десятичную дробь. Записываем сначала цéлую часть и ставим запятую:

3,

и сразу записываем числитель дробной части

3,002

Видим, что количество цифр после запятой и количество нулей в знаменателе дробной части смешанного числа одинаково.

Десятичная дробь 3,002 читается так:

«Три целых, две тысячных»

«Тысячных» потому что в знаменателе дробной части смешанного числа   содержится число 1000.

Научиться пользоваться таблицей Пифагора

Необходимо показать ребёнку, что числа из левого столбика умножаются на числа из верхней строки. Найти результат очень просто: нужно только провести рукой по таблице вниз и вправо от множителей до места пересечения, где и будет расположен результат умножения.

Возьмите пустую распечатанную или нарисованную таблицу и заполните её вместе с ребёнком. Причем в цвете, закрашивая одинаковый результат одним цветом. Сразу будет видна закономерность. Ребёнок увидит, что запоминать нужно только половину таблицы (согласно переместительному закону умножения).таблица умножение и деление тренажер

Понимая смысл умножения, можно использовать для вычислений предыдущие или последующие табличные случаи. При этом случае нужно лишь вычесть или прибавить нужное число.

Совет №5

Использовать шифровки, раскраски, лабиринты…

Подобные задания увлекают ребёнка и облегчают запоминание таблицы умножения.

Математические Шифровки

Использовать шифровки, раскраски, лабиринты…

Подобные задания увлекают ребёнка и облегчают запоминание таблицы умножения.

Что такое дроби?

Дробное число или дробь используется для представления сегмента целого числа.

Дробь будет состоять из двух чисел, расположенных одно над другим. Первое число, которое находится над строкой, является числителем . Второе число под линией — знаменатель .

Знаменатель указывает общее количество равных частей, на которые что-то делится. Числитель показывает, сколько из этих равных частей необходимо учитывать.

Самый простой способ запомнить дроби — это обозначить линию, разделяющую каждое число, «вне». Таким образом, дробь, записанная как 3/5, просто относится к 3 частям из 5 равных частей.

Учим умножение

Совет №1

Большую роль в усвоении таблицы умножения играет понимание смысла умножения. Объясните ребёнку смысл действия умножения и научите этим пользоваться при вычислениях.

Умножение – это сумма одинаковых слагаемых.

8 умножить на 3 – это значит, что число 8 мы должны взять 3 раза: 8 х 3 = 8 + 8 + 8

Понимая смысл умножения, ребёнок сможет найти результат даже в ситуации, когда он забыл какой-то случай из таблицы.

Например, забыв результат умножения числа 4 на 8, можно заменить умножение сложением и найти произведение: 4 х 8 = 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 = 32.

Важно знать переместительное свойство умножения (от перестановки множителей произведение не меняется), тогда результат можно найти ещё быстрее: 4 х 8 = 8 х 4 = 8 + 8 + 8 + 8 = 32

Совет № 2

Умножать можно с помощью рук

Умножение на 9
Для этого положите руки ладонями вверх, пальцы разогните. Мысленно пронумеруйте пальцы слева направо от 1 до 10. Загните тот палец, на какое число нужно умножить 9. Например, нужно 9х3. Загибаете 3 палец. Все пальцы слева (их 2 — это десятки), пальцы справа (их 7) — единицы. Соединяем десятки и единицы, получаем — 27.

Вычисление произведения любых однозначных чисел больше, чем 5

Способ 1

Пронумеруйте мысленно пальцы на обеих руках. Мизинец — 6, безымянный — 7, средний — 8, указательный — 9, большой — 10 (на то он и БОЛЬШОЙ, чтобы выражать самое БОЛЬШОЕ число).

Допустим, вы хотите узнать, сколько будет 8 х 7. Соедините вместе средний палец левой руки (8) с безымянным правой (7), как показано на рисунке. А теперь считайте. Два соединённых пальца плюс те, что под ними, указывают на количество десятков в произведении. В данном случае — 5. Число пальцев, оказавшихся над одним из сомкнутых пальцев, умножьте другим сомкнутым пальцем. В нашем случае 2 х 3 = 6. Это — число единиц в искомом произведении. Десятки складываем с единицами, и ответ готов — 56.

Способ 2

Например, нужно умножить 7х7. Загнём на левой руке столько пальцев, на сколько первый множитель больше 5, а на правой руке столько пальцев, на сколько второй множитель больше 5.

В данном случае будет загнуто по 2 пальца. Если сложить количество загнутых пальцев и перемножить количество не загнутых, то получится соответственно число десятков и единиц искомого произведения, т.е. 49. Если этим способом вычислять произведение 6х7, то получится 3 десятка и 12 единиц, т.е. 30+12=42

Проверьте и убедитесь, что эти способы действительно работают.

Совет № 3

Знание правил умножения упростит запоминание таблицы умножения:

При умножении любого числа на 1 получается то число, которое умножали.
Все результаты умножения на 10 начинаются с числа, которое мы умножаем, а заканчиваются на 0.
Все результаты умножения на 5 заканчиваются на 5 или 0: если умножали нечётное число – на 5, если чётное – на 0.
Чтобы умножать на 4, можно просто дважды удваивать число. Например, чтобы умножить 6 на 4, нужно удвоить 6 два раза: 6 + 6 = 12, 12 + 12 = 24.
При умножении на 9, запишите ряд ответов в столбик: 09, 18, 27, 36, 45, 54, 63, 72, 81, 90. Запомнить нужно первое и последнее число. Все остальные можно воспроизвести по правилу: первая цифра в двузначном числе увеличивается на 1, а вторая уменьшается на 1.
Как быстро и легко выучить таблицу умножения

Умножение десятичной дроби на натуральное число

Делитель – 10, 100, 1000, 10000 и т.д.

Чтобы умножить десятичную дробь на натуральное число 10, 100, 1000 и т.д., просто переносим запятую-разделитель вправо на столько нулей, сколько содержит это число.

Пример 1

3,67 ⋅ 10 = 36,7

Объяснение: Т.к. в числе 10 всего один ноль, то и запятую переносим на одну позицию вправо.

Пример 2

3,67 ⋅ 100 = 367

Объяснение: Т.к. в числе 100 два нуля, то запятую переносим на две позиции.

Пример 3

0,357 ⋅ 10 = 3,57

Объяснение: В числе 10 один ноль, следовательно, десятичный разделитель сдвигаем на одну позицию.

Пример 4

0,0043 ⋅ 1000 = 4,3

Объяснение: В числе 1000 три нуля, значит разделитель сдвигаем на три позиции.

Примечание: если количество нулей и, соответственно, позиций переноса разделителя больше, чем цифр после запятой, значит дописываем оставшиеся нули в конце полученного результата. Это работает и в обратную сторону (см. Пример 7 ниже).

Пример 5

3,67 ⋅ 1000 = 3670

Объяснение: В числе 1000 три нуля, следовательно разделитель переносим на две позиции и дописываем один ноль в конце найденного числа.

Делитель – любое число

Чтобы умножить десятичную дробь на любое натуральное целое число, отбрасываем запятую и выполняем умножение, как будто имеем дело не с дробью, а с обычным числом. Затем отсчитываем с конца полученного результата столько цифр, сколько было в дробной части исходной десятичной дроби, и ставим в этом месте запятую.

Пример 6: найдем произведение чисел 5,68 и 8.

Решение:

Убираем запятую в числе 5,68 и умножаем его на 8: 568 ⋅ 8 = 4544

Отсчитываем две цифры с конца и добавляем запятую-разделитель, т.е.:

5,68 ⋅ 8 = 45,44

Примечание: Если десятичная дробь меньше 1 (т.е. целая часть равна 0), то отбросив запятую, мы не учитываем при умножении ноль/нули, которые идут в начале.

Пример 7: умножим число 0,089 на 7.

Решение:

Убираем запятую в числе 0,089 и, отбросив нули, умножаем его на 7: 89 ⋅ 7 = 623

Здесь обратная ситуация рассмотренной ранее в Примере 5. С конца отсчитываем 3 цифры, ставим запятую и добавляем ноль слева от нее, т.е.:

0,089 ⋅ 7 = 0,623

Как умножить десятичную дробь на обыкновенную

Чтобы умножить десятичную дробь на обыкновенную или смешанную, используют два правила. При первом приводим десятичную дробь к виду обыкновенной и потом умножаем на нужное число. Во втором случае приводим обыкновенную или смешанную дробь в десятичную и потом умножаем.

Пример 1. Умножить 3/5 на 0,9.

Как решаем:

  1. Записать 0,9 в виде обыкновенной дроби:

    0,9 = 9/10.

  2. Умножить числа по правилам
    3/5 ∗ 9/10 = 27/50 = 0,54.

Ответ: 3/5 ∗ 0,9 = 0,54.

Пример 2. Умножить 0,18 на 3 1/4.

Как решаем:

  1. Записать 3 1/4 в виде десятичной дроби:

    3 1/4 = 3,25.

  2. Произвести умножение в столбик или при помощи калькулятора:

    0,18 ∗ 3,25 = 0,585.

Ответ: 0,18 ∗ 3 1/4 = 0,585.

А если нужно решить примеры с десятичными дробями быстро — поможет онлайн-калькулятор. Пользуйтесь им, если уже разобрались с темой и щелкаете задачки легко и без помощников:

  • Калькулятор раз
  • Два
  • Три

Как выполнить умножение трех и более обыкновенных дробей

Мы можем распространить на действие умножения обыкновенных дробей те же свойства, которые характерны для умножения натуральных чисел. Это следует из самого определения данных понятий.

Благодаря знанию сочетательного и переместительного свойства можно перемножать три обыкновенные дроби и более. Допустимо переставлять множители местами для большего удобства или расставлять скобки так, как будет легче считать.

Покажем на примере, как это делается.

Пример 6

Умножьте четыре обыкновенные дроби 120, 125, 37 и 58.

Решение: для начала сделаем запись произведения. У нас получится 120·125·37·58. Нам надо перемножить между собой все числители и все знаменатели: 120·125·37·58=1·12·3·520·5·7·8.

Перед тем, как начать умножение, мы можем немного облегчить себе задачу и разложить некоторые числа на простые множители для дальнейшего сокращения. Это будет проще, чем сокращать уже готовую дробь, получившуюся в результате.

1·12·3·520·5·7·8=1·(2·2·3)·3·52·2·5·5·7(2·2·2)=3·35·7·2·2·2=9280

Ответ: 1·12·3·520·5·7·8=9280.

Пример 7

Перемножьте 5 чисел 78·12·8·536·10.

Решение

Для удобства мы можем сгруппировать дробь 78 с числом 8, а число 12 с дробью 536, поскольку при этом нам будут очевидны будущие сокращения. В итоге у нас получится:78·12·8·536·10=78·8·12·536·10=7·88·12·536·10=71·2·2·3·52·2·3·3·10==7·53·10=7·5·103=3503=11623

Ответ: 78·12·8·536·10=11623.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Вековой опыт
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: